scholarly journals Review of “Comparison of ERA5 and ERA-Interim near surface air temperature and precipitation over Arctic sea ice: Effects on sea ice thermodynamics and evolution” by Wang et al

2019 ◽  
Author(s):  
Alek Petty
2021 ◽  
Author(s):  
Steve Delhaye ◽  
Thierry Fichefet ◽  
François Massonnet ◽  
David Docquier ◽  
Rym Msadek ◽  
...  

Abstract. The retreat of Arctic sea ice is frequently considered as a possible driver of changes in climate extremes in the Arctic and possibly down to mid-latitudes. However, it is unclear how the atmosphere will respond to a near-total retreat of summer Arctic sea ice, a reality that might occur in the foreseeable future. This study explores this question by conducting sensitivity experiments with two global coupled climate models run at two different horizontal resolutions to investigate the change in temperature and precipitation extremes during summer over peripheral Arctic regions following a sudden reduction in summer Arctic sea ice cover. An increase in frequency and persistence of maximum surface air temperature is found in all peripheral Arctic regions during the summer when sea ice loss occurs. For each million km2 of Arctic sea ice extent reduction, the absolute frequency of days exceeding the surface air temperature of the climatological 90th percentile increases by ~4 % over the Svalbard area, and the duration of warm spells increases by ~1 day per month over the same region. Furthermore, we find that the 10th percentile of surface daily air temperature increases more than the 90th percentile, leading to a weakened diurnal cycle of surface air temperature. Finally, an increase in extreme precipitation, which is less robust (statistically speaking) than the increase in extreme temperatures, is found in all regions in summer. These findings suggest that a sudden retreat of summer Arctic sea ice clearly impacts the extremes in maximum surface air temperature and precipitation over the peripheral Arctic regions with the largest influence over inhabited islands such as Svalbard or Northern Canada. Nonetheless, even with a large sea ice reduction in regions close to the North Pole, the local precipitation response is relatively small compared to internal climate variability.


2018 ◽  
Author(s):  
Caixin Wang ◽  
Robert M. Graham ◽  
Keguang Wang ◽  
Sebastian Gerland ◽  
Mats A. Granskog

Abstract. Rapid changes are occurring in the Arctic, including a reduction in sea ice thickness and coverage and a shift towards younger and thinner sea ice. Snow and sea ice models are often used to study these ongoing changes in the Arctic, and are typically forced by atmospheric reanalyses in absence of observations. ERA5 is a new global reanalysis that will replace the widely used ERA-Interim (ERA-I). In this study, we compare the 2 m air temperature (T2M) and precipitation between ERA I and ERA5, and evaluate these products using buoy observations from Arctic sea ice. We further assess how biases in reanalyses influence the snow and sea ice evolution in the Arctic, when used to force a thermodynamic sea ice model. We find that both reanalyses have a warm bias over Arctic sea ice in relation to the buoy observations. The warm bias is smaller in the warm season, and larger in the cold season, especially when the T2M is lower than −25 °C. Interestingly, the warm bias in the new ERA5 is on average 2.1 °C (daily mean) larger than ERA-I during the cold season. While ERA-I is drier than most modern reanalyses in the Arctic, the total precipitation along the buoy trajectories is often lower in ERA5 than in ERA-I. Nonetheless, the snowfall products are broadly similar for both ERA I and ERA5. ERA-I had substantial anomalous Arctic rainfall, which is greatly reduced in ERA5. Simulations with a freezing degree days (FDD) model and a 1D thermodynamic sea ice model demonstrate that the warm bias in ERA5 acts to reduce thermodynamic ice growth. However, the lower precipitation in ERA5 results in a thinner snow pack that allows more heat loss to the atmosphere. Thus, the larger warm bias and lower precipitation in ERA5, compared with ERA I, compensate in terms of the effect on winter ice growth. Ultimately, we find slightly thicker ice at the end of growth season when using ERA5 forcing, compared with ERA-I. Thus differences in the precipitation fields of the two reanalyses have a larger influence on the sea ice evolution than the T2M.


2019 ◽  
Vol 13 (6) ◽  
pp. 1661-1679 ◽  
Author(s):  
Caixin Wang ◽  
Robert M. Graham ◽  
Keguang Wang ◽  
Sebastian Gerland ◽  
Mats A. Granskog

Abstract. Rapid changes are occurring in the Arctic, including a reduction in sea ice thickness and coverage and a shift towards younger and thinner sea ice. Snow and sea ice models are often used to study these ongoing changes in the Arctic, and are typically forced by atmospheric reanalyses in absence of observations. ERA5 is a new global reanalysis that will replace the widely used ERA-Interim (ERA-I). In this study, we compare the 2 m air temperature (T2M), snowfall (SF) and total precipitation (TP) from ERA-I and ERA5, and evaluate these products using buoy observations from Arctic sea ice for the years 2010 to 2016. We further assess how biases in reanalyses can influence the snow and sea ice evolution in the Arctic, when used to force a thermodynamic sea ice model. We find that ERA5 is generally warmer than ERA-I in winter and spring (0–1.2 ∘C), but colder than ERA-I in summer and autumn (0–0.6 ∘C) over Arctic sea ice. Both reanalyses have a warm bias over Arctic sea ice relative to buoy observations. The warm bias is smaller in the warm season, and larger in the cold season, especially when the T2M is below −25 ∘C in the Atlantic and Pacific sectors. Interestingly, the warm bias for ERA-I and new ERA5 is on average 3.4 and 5.4 ∘C (daily mean), respectively, when T2M is lower than −25 ∘C. The TP and SF along the buoy trajectories and over Arctic sea ice are consistently higher in ERA5 than in ERA-I. Over Arctic sea ice, the TP in ERA5 is typically less than 10 mm snow water equivalent (SWE) greater than in ERA-I in any of the seasons, while the SF in ERA5 can be 50 mm SWE higher than in ERA-I in a season. The largest increase in annual TP (40–100 mm) and SF (100–200 mm) in ERA5 occurs in the Atlantic sector. The SF to TP ratio is larger in ERA5 than in ERA-I, on average 0.6 for ERA-I and 0.8 for ERA5 along the buoy trajectories. Thus, the substantial anomalous Arctic rainfall in ERA-I is reduced in ERA5, especially in summer and autumn. Simulations with a 1-D thermodynamic sea ice model demonstrate that the warm bias in ERA5 acts to reduce thermodynamic ice growth. The higher precipitation and snowfall in ERA5 results in a thicker snowpack that allows less heat loss to the atmosphere. Thus, the larger winter warm bias and higher precipitation in ERA5, compared with ERA-I, result in thinner ice thickness at the end of the growth season when using ERA5; however the effect is small during the freezing period.


2021 ◽  
Author(s):  
Vladimir Semenov ◽  
Tatiana Matveeva

<p>Global warming in the recent decades has been accompanied by a rapid recline of the Arctic sea ice area most pronounced in summer (10% per decade). To understand the relative contribution of external forcing and natural variability to the modern and future sea ice area changes, it is necessary to evaluate a range of long-term variations of the Arctic sea ice area in the period before a significant increase in anthropogenic emissions of greenhouse gases into the atmosphere. Available observational data on the spatiotemporal dynamics of Arctic sea ice until 1950s are characterized by significant gaps and uncertainties. In the recent years, there have appeared several reconstructions of the early 20<sup>th</sup> century Arctic sea ice area that filled the gaps by analogue methods or utilized combined empirical data and climate model’s output. All of them resulted in a stronger that earlier believed negative sea ice area anomaly in the 1940s concurrent with the early 20<sup>th</sup> century warming (ETCW) peak. In this study, we reconstruct the monthly average gridded sea ice concentration (SIC) in the first half of the 20th century using the relationship between the spatiotemporal features of SIC variability, surface air temperature over the Northern Hemisphere extratropical continents, sea surface temperature in the North Atlantic and North Pacific, and sea level pressure. In agreement with a few previous results, our reconstructed data also show a significant negative anomaly of the Arctic sea ice area in the middle of the 20th century, however with some 15% to 30% stronger amplitude, about 1.5 million km<sup>2</sup> in September and 0.7 million km<sup>2</sup> in March. The reconstruction demonstrates a good agreement with regional Arctic sea ice area data when available and suggests that ETWC in the Arctic has been accompanied by a concurrent sea ice area decline of a magnitude that have been exceeded only in the beginning of the 21<sup>st</sup> century.</p>


2016 ◽  
Vol 29 (2) ◽  
pp. 889-902 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Ivana Cvijanovic ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract Reduction of the Arctic sea ice cover can affect the atmospheric circulation and thus impact the climate beyond the Arctic. The atmospheric response may, however, vary with the geographical location of sea ice loss. The atmospheric sensitivity to the location of sea ice loss is studied using a general circulation model in a configuration that allows combination of a prescribed sea ice cover and an active mixed layer ocean. This hybrid setup makes it possible to simulate the isolated impact of sea ice loss and provides a more complete response compared to experiments with fixed sea surface temperatures. Three investigated sea ice scenarios with ice loss in different regions all exhibit substantial near-surface warming, which peaks over the area of ice loss. The maximum warming is found during winter, delayed compared to the maximum sea ice reduction. The wintertime response of the midlatitude atmospheric circulation shows a nonuniform sensitivity to the location of sea ice reduction. While all three scenarios exhibit decreased zonal winds related to high-latitude geopotential height increases, the magnitudes and locations of the anomalies vary between the simulations. Investigation of the North Atlantic Oscillation reveals a high sensitivity to the location of the ice loss. The northern center of action exhibits clear shifts in response to the different sea ice reductions. Sea ice loss in the Atlantic and Pacific sectors of the Arctic cause westward and eastward shifts, respectively.


2009 ◽  
Vol 48 (3) ◽  
pp. 429-449 ◽  
Author(s):  
Yves Durand ◽  
Martin Laternser ◽  
Gérald Giraud ◽  
Pierre Etchevers ◽  
Bernard Lesaffre ◽  
...  

Abstract Since the early 1990s, Météo-France has used an automatic system combining three numerical models to simulate meteorological parameters, snow cover stratification, and avalanche risk at various altitudes, aspects, and slopes for a number of mountainous regions in France. Given the lack of sufficient directly observed long-term snow data, this “SAFRAN”–Crocus–“MEPRA” (SCM) model chain, usually applied to operational avalanche forecasting, has been used to carry out and validate retrospective snow and weather climate analyses for the 1958–2002 period. The SAFRAN 2-m air temperature and precipitation climatology shows that the climate of the French Alps is temperate and is mainly determined by atmospheric westerly flow conditions. Vertical profiles of temperature and precipitation averaged over the whole period for altitudes up to 3000 m MSL show a relatively linear variation with altitude for different mountain areas with no constraint of that kind imposed by the analysis scheme itself. Over the observation period 1958–2002, the overall trend corresponds to an increase in the annual near-surface air temperature of about 1°C. However, variations are large at different altitudes and for different seasons and regions. This significantly positive trend is most obvious in the 1500–2000-m MSL altitude range, especially in the northwest regions, and exhibits a significant relationship with the North Atlantic Oscillation index over long periods. Precipitation data are diverse, making it hard to identify clear trends within the high year-to-year variability.


Sign in / Sign up

Export Citation Format

Share Document