scholarly journals The Added Value of Assimilating Remotely Sensed Soil Moisture for Estimating Summertime Soil Moisture-Air Temperature Coupling Strength

2018 ◽  
Vol 54 (9) ◽  
pp. 6072-6084 ◽  
Author(s):  
Jianzhi Dong ◽  
Wade T. Crow
2014 ◽  
Vol 18 (6) ◽  
pp. 2343-2357 ◽  
Author(s):  
N. Wanders ◽  
D. Karssenberg ◽  
A. de Roo ◽  
S. M. de Jong ◽  
M. F. P. Bierkens

Abstract. We evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the prediction of the timing and height of the flood peak and low flows. EFAS is an operational flood forecasting system for Europe and uses a distributed hydrological model (LISFLOOD) for flood predictions with lead times of up to 10 days. For this study, satellite-derived soil moisture from ASCAT (Advanced SCATterometer), AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System) and SMOS (Soil Moisture and Ocean Salinity) is assimilated into the LISFLOOD model for the Upper Danube Basin and results are compared to assimilation of discharge observations only. To assimilate soil moisture and discharge data into the hydrological model, an ensemble Kalman filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, is included to ensure increased performance of the EnKF. For the validation, additional discharge observations not used in the EnKF are used as an independent validation data set. Our results show that the accuracy of flood forecasts is increased when more discharge observations are assimilated; the mean absolute error (MAE) of the ensemble mean is reduced by 35%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of baseflows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the continuous ranked probability score (CRPS) shows a performance increase of 5–10% on average, compared to assimilation of discharge only. When soil moisture data is used, the timing errors in the flood predictions are decreased especially for shorter lead times and imminent floods can be forecasted with more skill. The number of false flood alerts is reduced when more observational data is assimilated into the system. The added values of the satellite data is largest when these observations are assimilated in combination with distributed discharge observations. These results show the potential of remotely sensed soil moisture observations to improve near-real time flood forecasting in large catchments.


2020 ◽  
Author(s):  
Domenico De Santis ◽  
Christian Massari ◽  
Stefania Camici ◽  
Sara Modanesi ◽  
Luca Brocca ◽  
...  

<p>The increasing availability of remotely sensed soil moisture (SM) observations has brought great interest in their use in data assimilation (DA) frameworks in order to improve streamflow simulations. However, the added-value of assimilating satellite SM into rainfall-runoff models is still difficult to be quantified, and much more research is needed to fully understand benefits and limitations.</p><p>Here, an extensive evaluation of remotely sensed SM assimilation on hydrological model performances was carried out, involving 775 catchments across Europe. Satellite observations for over a decade from the three ESA CCI SM products (ACTIVE, PASSIVE and COMBINED) were assimilated in a lumped rainfall-runoff model which includes a thin surface layer in its soil schematization, by using the Ensemble Kalman Filter (EnKF). Observations were mapped into the space of modelled surface layer SM through a monthly CDF-matching prior to DA, while the observation error variance was calibrated in every catchment in order to maximize the assimilation efficiency.</p><p>The implemented DA procedure, aimed at reducing only random errors in SM variables, generally resulted in limited runoff improvements, although with some variability within the study domain. Factors emerging as relevant for the assessment of assimilation impact were: i) the open-loop (OL) model performance; ii) the remotely sensed SM accuracy for hydrological purposes; iii) the sensitivity of the catchment response to soil moisture dynamics; and also iv) issues in DA implementation (e.g., violations in theoretical assumptions).</p><p>The open-loop model results contributed significantly to explain differences in assimilation performances observed within the study area as well as at the seasonal scale; overall, the high OL efficiency is the main cause of the slight improvements here observed after DA. The integration of satellite SM information, showing greater skills in correspondence of poorer streamflow simulations, confirmed a potential in reducing the effects of rainfall inaccuracies.</p><p>The variability in satellite SM accuracy for hydrological purposes was also found to be relevant in DA assessment. The ACTIVE product assimilation generally provided the best streamflow results within the study catchments, followed by COMBINED and PASSIVE ones, while factors affecting the SM retrieval such as vegetation density and topographic complexity were not found to have a decisive effect on DA results.</p><p>Low assimilation performances were obtained when runoff was dominated by snow dynamics (e.g., in the northern areas of the study domain, or in winter season at medium latitudes), due to the SM conditions having a negligible effect on the hydrological response.</p><p>Finally, in basins where SM was persistently near the saturation value, deteriorations in hydrological simulations were observed, mainly attributable to violation of error normality hypothesis in EnKF due to the bounded nature of soil moisture.</p><p>In conclusion, the added-value of assimilating remotely sensed SM into rainfall-runoff models was confirmed to be linked to multiple factors: understanding their contribution and interactions deserves further research and is fundamental to take full advantage of the potential of satellite SM retrievals, in parallel with their progress in terms of accuracy and resolutions.</p>


2013 ◽  
Vol 10 (11) ◽  
pp. 13783-13816 ◽  
Author(s):  
N. Wanders ◽  
D. Karssenberg ◽  
A. de Roo ◽  
S. M. de Jong ◽  
M. F. P. Bierkens

Abstract. We evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the prediction of the timing and height of the flood peak and low flows. EFAS is an operational flood forecasting system for Europe and uses a distributed hydrological model for flood predictions with lead times up to 10 days. For this study, satellite-derived soil moisture from ASCAT, AMSR-E and SMOS is assimilated into the EFAS system for the Upper Danube basin and results are compared to assimilation of discharge observations only. To assimilate soil moisture and discharge data into EFAS, an Ensemble Kalman Filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, is included to ensure optimal performance of the EnKF. For the validation, additional discharge observations not used in the EnKF, are used as an independent validation dataset. Our results show that the accuracy of flood forecasts is increased when more discharge observations are assimilated; the Mean Absolute Error (MAE) of the ensemble mean is reduced by 65%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of base flows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the Continuous Ranked Probability Score (CRPS) shows a performance increase of 5–10% on average, compared to assimilation of discharge only. When soil moisture data is used, the timing errors in the flood predictions are decreased especially for shorter lead times and imminent floods can be forecasted with more skill. The number of false flood alerts is reduced when more data is assimilated into the system and the best performance is achieved with the assimilation of both discharge and satellite observations. The additional gain is highest when discharge observations from both upstream and downstream areas are used in combination with the soil moisture data. These results show the potential of remotely sensed soil moisture observations to improve near-real time flood forecasting in large catchments.


2007 ◽  
Vol 8 (1) ◽  
pp. 56-67 ◽  
Author(s):  
Wade T. Crow

Abstract A novel methodology is introduced for quantifying the added value of remotely sensed soil moisture products for global land surface modeling applications. The approach is based on the assimilation of soil moisture retrievals into a simple surface water balance model driven by satellite-based precipitation products. Filter increments (i.e., discrete additions or subtractions of water suggested by the filter) are then compared to antecedent precipitation errors determined using higher-quality rain gauge observations. A synthetic twin experiment demonstrates that the correlation coefficient between antecedent precipitation errors and filter increments provides an effective proxy for the accuracy of the soil moisture retrievals themselves. Given the inherent difficulty of directly validating remotely sensed soil moisture products using ground-based observations, this assimilation-based proxy provides a valuable tool for efforts to improve soil moisture retrieval strategies and quantify the novel information content of remotely sensed soil moisture retrievals for land surface modeling applications. Using real spaceborne data, the approach is demonstrated for four different remotely sensed soil moisture datasets along two separate transects in the southern United States. Results suggest that the relative superiority of various retrieval strategies varies geographically.


2019 ◽  
Vol 11 (3) ◽  
pp. 284 ◽  
Author(s):  
Linglin Zeng ◽  
Shun Hu ◽  
Daxiang Xiang ◽  
Xiang Zhang ◽  
Deren Li ◽  
...  

Soil moisture mapping at a regional scale is commonplace since these data are required in many applications, such as hydrological and agricultural analyses. The use of remotely sensed data for the estimation of deep soil moisture at a regional scale has received far less emphasis. The objective of this study was to map the 500-m, 8-day average and daily soil moisture at different soil depths in Oklahoma from remotely sensed and ground-measured data using the random forest (RF) method, which is one of the machine-learning approaches. In order to investigate the estimation accuracy of the RF method at both a spatial and a temporal scale, two independent soil moisture estimation experiments were conducted using data from 2010 to 2014: a year-to-year experiment (with a root mean square error (RMSE) ranging from 0.038 to 0.050 m3/m3) and a station-to-station experiment (with an RMSE ranging from 0.044 to 0.057 m3/m3). Then, the data requirements, importance factors, and spatial and temporal variations in estimation accuracy were discussed based on the results using the training data selected by iterated random sampling. The highly accurate estimations of both the surface and the deep soil moisture for the study area reveal the potential of RF methods when mapping soil moisture at a regional scale, especially when considering the high heterogeneity of land-cover types and topography in the study area.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 118
Author(s):  
Giovanni Ruggieri ◽  
Vincenzo Allocca ◽  
Flavio Borfecchia ◽  
Delia Cusano ◽  
Palmira Marsiglia ◽  
...  

In many Italian regions, and particularly in southern Italy, karst aquifers are the main sources of drinking water and play a crucial role in the socio-economic development of the territory. Hence, estimating the groundwater recharge of these aquifers is a fundamental task for the proper management of water resources, while also considering the impacts of climate changes. In the southern Apennines, the assessment of hydrological parameters that is needed for the estimation of groundwater recharge is a challenging issue, especially for the spatial and temporal inhomogeneity of networks of rain and air temperature stations, as well as the variable geomorphological features and land use across mountainous karst areas. In such a framework, the integration of terrestrial and remotely sensed data is a promising approach to limit these uncertainties. In this research, estimations of actual evapotranspiration and groundwater recharge using remotely sensed data gathered by the Moderate Resolution Imaging Spectrometer (MODIS) satellite in the period 2000–2014 are shown for karst aquifers of the southern Apennines. To assess the uncertainties affecting conventional methods based on empirical formulas, the values estimated by the MODIS dataset were compared with those calculated by Coutagne, Turc, and Thornthwaite classical empirical formulas, which were based on the recordings of meteorological stations. The annual rainfall time series of 266 rain gauges and 150 air temperature stations, recorded using meteorological networks managed by public agencies in the period 2000–2014, were considered for reconstructing the regional distributed models of actual evapotranspiration (AET) and groundwater recharge. Considering the MODIS AET, the mean annual groundwater recharge for karst aquifers was estimated to be about 448 mm·year−1. In contrast, using the Turc, Coutagne, and Thornthwaite methods, it was estimated as being 494, 533, and 437 mm·year−1, respectively. The obtained results open a new methodological perspective for the assessment of the groundwater recharge of karst aquifers at the regional and mean annual scales, allowing for limiting uncertainties and taking into account a spatial resolution greater than that of the existing meteorological networks. Among the most relevant results obtained via the comparison of classical approaches used for estimating evapotranspiration is the good matching of the actual evapotranspiration estimated using MODIS data with the potential evapotranspiration estimated using the Thornthwaite formula. This result was considered linked to the availability of soil moisture for the evapotranspiration demand due to the relevant precipitation in the area, the general occurrence of soils covering karst aquifers, and the dense vegetation.


Author(s):  
M.P. Schamschula ◽  
W.L. Crosson ◽  
C. Laymon ◽  
R. Inguva ◽  
A. Steward

Sign in / Sign up

Export Citation Format

Share Document