scholarly journals The 2017 Mw 5.5 Pohang Earthquake, South Korea, and Poroelastic Stress Changes Associated With Fluid Injection

Author(s):  
H. Lim ◽  
K. Deng ◽  
Y.H. Kim ◽  
J.‐H. Ree ◽  
T.‐R. A. Song ◽  
...  
SPE Journal ◽  
2015 ◽  
Vol 20 (04) ◽  
pp. 689-700 ◽  
Author(s):  
S.. Ameen ◽  
A. Dahi Taleghani

Summary Injectivity loss is a common problem in unconsolidated-sand formations. Injection of water into a poorly cemented granular medium may lead to internal erosion, and consequently formation of preferential flow paths within the medium because of channelization. Channelization in the porous medium might occur when fluid-induced stresses become locally larger than a critical threshold and small grains are dislodged and carried away; hence, porosity and permeability of the medium will evolve along the induced flow paths. Vice versa, flowback during shut-in might carry particles back to the well and cause sand accumulation inside the well, and subsequently loss of injectivity. In most cases, to maintain the injection rate, operators will increase injection pressure and pumping power. The increased injection pressure results in stress changes and possibly further changes in channel patterns around the wellbore. Experimental laboratory studies have confirmed the presence of the transition from uniform Darcy flow to a fingered-pattern flow. To predict these phenomena, a model is needed to fill this gap by predicting the formation of preferential flow paths and their evolution. A model based on the multiphase-volume-fraction concept is used to decompose porosity into mobile and immobile porosities where phases may change spatially, evolve over time, and lead to development of erosional channels depending on injection rates, viscosity, and rock properties. This model will account for both particle release and suspension deposition. By use of this model, a methodology is proposed to derive model parameters from routine injection tests by inverse analysis. The proposed model presents the characteristic behavior of unconsolidated formation during fluid injection and the possible effect of injection parameters on downhole-permeability evolution.


Science ◽  
2019 ◽  
Vol 364 (6439) ◽  
pp. 464-468 ◽  
Author(s):  
Pathikrit Bhattacharya ◽  
Robert C. Viesca

Earthquake swarms attributed to subsurface fluid injection are usually assumed to occur on faults destabilized by increased pore-fluid pressures. However, fluid injection could also activate aseismic slip, which might outpace pore-fluid migration and transmit earthquake-triggering stress changes beyond the fluid-pressurized region. We tested this theoretical prediction against data derived from fluid-injection experiments that activated and measured slow, aseismic slip on preexisting, shallow faults. We found that the pore pressure and slip history imply a fault whose strength is the product of a slip-weakening friction coefficient and the local effective normal stress. Using a coupled shear-rupture model, we derived constraints on the hydromechanical parameters of the actively deforming fault. The inferred aseismic rupture front propagates faster and to larger distances than the diffusion of pressurized pore fluid.


2020 ◽  
Vol 39 (12) ◽  
pp. 893-900
Author(s):  
Inga Berre ◽  
Ivar Stefansson ◽  
Eirik Keilegavlen

Hydraulic stimulation of geothermal reservoirs in low-permeability basement and crystalline igneous rock can enhance permeability by reactivation and shear dilation of existing fractures. The process is characterized by interaction between fluid flow, deformation, and the fractured structure of the formation. The flow is highly affected by the fracture network, which in turn is deformed because of hydromechanical stress changes caused by the fluid injection. This process-structure interaction is decisive for the outcome of hydraulic stimulation, and, in analysis of governing mechanisms, physics-based modeling has potential to complement field and experimental data. Here, we show how recently developed simulation technology is a valuable tool to understand governing mechanisms of hydromechanical coupled processes and the reactivation and deformation of faults. The methodology fully couples flow in faults and matrix with poroelastic matrix deformation and a contact mechanics model for the faults, including dilation because of slip. Key elements are high aspect ratios of faults and strong nonlinearities in highly coupled governing equations. Example simulations using our open-source software illustrate direct and indirect hydraulic fault reactivation and corresponding permeability enhancement. We investigate the effect of the fault and matrix permeability and the Biot coefficient. A higher matrix permeability leads to more leakage from a permeable fault and thus suppresses reactivation and slip of the fault compared to the case with a lower matrix permeability. If a fault is a barrier to flow, increase of pressure because of the fluid injection results in stabilization of the fault; the situation is opposite if the fault is highly permeable compared to the matrix. For the given setup, lowering the Biot coefficient results in more slip than the base case. While conceptually simple, the examples illustrate the strong hydromechanical couplings and the prospects of physics-based numerical models in investigating the dynamics.


2020 ◽  
Author(s):  
Dominik Zbinden ◽  
Antonio Pio Rinaldi ◽  
Tobias Diehl ◽  
Stefan Wiemer

<p>Industrial projects that involve fluid injection into the deep underground (e.g., geothermal energy, wastewater disposal) can induce seismicity, which may jeopardize the acceptance of such geo-energy projects and, in the case of larger induced earthquakes, damage infrastructure and pose a threat to the population. Such earthquakes can occur because fluid injection yields pressure and stress changes in the subsurface, which can reactivate pre-existing faults. Many studies have so far focused on injection into undisturbed reservoir conditions (i.e., hydrostatic pressure and single-phase flow), while only very few studies consider disturbed <em>in-situ</em> conditions including multi-phase fluid flow (i.e., gas and water). Gas flow has been suggested as a trigger mechanism of aftershocks in natural seismic sequences and can play an important role at volcanic sites. In addition, the deep geothermal project in St. Gallen, Switzerland, is a unique case study where an induced seismic sequence occurred almost simultaneously with a gas kick, suggesting that the gas may have affected the induced seismicity.</p><p>Here, we focus on the hydro-mechanical modeling of fluid injection into disturbed reservoir conditions considering multi-phase fluid flow. We couple the fluid flow simulator TOUGH2 with different geomechanical codes to study the effect of gas on induced seismicity in general and in the case of St. Gallen. The results show that overpressurized gas can affect the size and timing of induced earthquakes and that it may have contributed to enhance the induced seismicity in St. Gallen. Our findings can lead to a more detailed understanding of the influence of a gas phase on the induced seismicity.</p>


2020 ◽  
Vol 92 (1) ◽  
pp. 187-198
Author(s):  
Thomas H. W. Goebel ◽  
Manoochehr Shirzaei

Abstract Evidence for fluid-injection-induced seismicity is rare in California hydrocarbon basins, despite widespread injection close to seismically active faults. We investigate a potential case of injection-induced earthquakes associated with San Ardo oilfield operations that began in the early 1950s. The largest potentially induced events occurred in 1955 (ML 5.2) and 1985 (Mw 4.5) within ∼6  km from the oilfield. We analyze Synthetic Aperture Radar interferometric images acquired by Sentinel-1A/B satellites between 2016 and 2020 and find surface deformation of up to 1.5  cm/yr, indicating pressure-imbalance in parts of the oilfield. Fluid injection in San Ardo is concentrated within highly permeable rocks directly above the granitic basement at a depth of ∼800  m. Seismicity predominantly occurs along basement faults at 6–13 km depths. Seismicity and wastewater disposal wells are spatially correlated to the north of the oilfield. Temporal correlations are observed over more than 40 yr with correlation coefficients of up to 0.71 for seismicity within a 24 km distance from the oilfield. Such large distances have not previously been observed in California but are similar to the large spatial footprint of injection in Oklahoma. The San Ardo seismicity shows anomalous clustering with earthquakes consistently occurring at close spatial proximity but long interevent times. Similar clustering has previously been reported in California geothermal fields and may be indicative of seismicity driven by long-term, spatially persistent external forcing. The complexity of seismic behavior at San Ardo suggests that multiple processes, such as elastic stress transfer and aseismic slip transients, contribute to the potentially induced earthquakes. The present observations show that fluid-injection operations occur close to seismically active faults in California. Yet, seismicity is predominantly observed on smaller unmapped faults with little observational evidence that large faults are sensitive to induced stress changes.


2019 ◽  
Vol 109 (4) ◽  
pp. 1203-1216 ◽  
Author(s):  
Louis Quinones ◽  
Heather R. DeShon ◽  
SeongJu Jeong ◽  
Paul Ogwari ◽  
Oner Sufri ◽  
...  

Abstract Since 2008, earthquake sequences within the Fort Worth basin (FWB), north Texas, have been linked to wastewater disposal activities related to unconventional shale‐gas production. The North Texas Earthquake Study (NTXES) catalog (2008–2018), described and included herein, uses a combination of local and regional seismic networks to track significant seismic sequences in the basin. The FWB earthquakes occur along discrete faults that are relatively far apart (>30  km), allowing for more detailed study of individual sequence development. The three largest sequences (magnitude 3.6+) are monitored by local seismic networks (<15  km epicentral distances), whereas basinwide seismicity outside these three sequences is monitored using regional distance stations. A regional 1D velocity model for the FWB reflects basinwide well log, receiver function, and regional crustal structure studies and is modified for the larger individual earthquake sequences using local well‐log and geology data. Here, we present an mb_Lg relationship appropriate for Texas and a basin‐specific ML relationship, both calculated using attenuation curves developed with the NTXES catalog. Analysis of the catalog reveals that the earthquakes generally occur within the Precambrian basement formation along steeply dipping normal faults, and although overall seismicity rates have decreased since 2016, new faults have become active. Between 2006 and 2018, more than 2 billion barrels of fluids were injected into the Ellenburger formation within the FWB. We observe strong spatial and temporal correlations between the earthquake locations and wastewater disposal well locations and injection volumes, implying that fluid injection activities may be the main driving force of seismicity in the basin. In addition, we observe seismicity occurring at greater distances from injection wells (>10  km) over time, implying that far‐field stress changes associated with fluid injection activities may be an important component to understanding the seismic hazard of induced seismicity sequences.


Sign in / Sign up

Export Citation Format

Share Document