scholarly journals Fault slip in hydraulic stimulation of geothermal reservoirs: Governing mechanisms and process-structure interaction

2020 ◽  
Vol 39 (12) ◽  
pp. 893-900
Author(s):  
Inga Berre ◽  
Ivar Stefansson ◽  
Eirik Keilegavlen

Hydraulic stimulation of geothermal reservoirs in low-permeability basement and crystalline igneous rock can enhance permeability by reactivation and shear dilation of existing fractures. The process is characterized by interaction between fluid flow, deformation, and the fractured structure of the formation. The flow is highly affected by the fracture network, which in turn is deformed because of hydromechanical stress changes caused by the fluid injection. This process-structure interaction is decisive for the outcome of hydraulic stimulation, and, in analysis of governing mechanisms, physics-based modeling has potential to complement field and experimental data. Here, we show how recently developed simulation technology is a valuable tool to understand governing mechanisms of hydromechanical coupled processes and the reactivation and deformation of faults. The methodology fully couples flow in faults and matrix with poroelastic matrix deformation and a contact mechanics model for the faults, including dilation because of slip. Key elements are high aspect ratios of faults and strong nonlinearities in highly coupled governing equations. Example simulations using our open-source software illustrate direct and indirect hydraulic fault reactivation and corresponding permeability enhancement. We investigate the effect of the fault and matrix permeability and the Biot coefficient. A higher matrix permeability leads to more leakage from a permeable fault and thus suppresses reactivation and slip of the fault compared to the case with a lower matrix permeability. If a fault is a barrier to flow, increase of pressure because of the fluid injection results in stabilization of the fault; the situation is opposite if the fault is highly permeable compared to the matrix. For the given setup, lowering the Biot coefficient results in more slip than the base case. While conceptually simple, the examples illustrate the strong hydromechanical couplings and the prospects of physics-based numerical models in investigating the dynamics.

2019 ◽  
Vol 11 (24) ◽  
pp. 6904 ◽  
Author(s):  
Sandro Andrés ◽  
David Santillán ◽  
Juan Carlos Mosquera ◽  
Luis Cueto-Felgueroso

Geothermal energy has emerged as an alternative to ensure a green energy supply while tackling climate change. Geothermal systems extract the heat stored in the Earth’s crust by warming up water, but the low rock permeability at exploitation depths may require the hydraulic stimulation of the rock fracture network. Enhanced Geothermal Systems (EGS) employ techniques such as hydro-shearing and hydro-fracturing for that purpose, but their use promotes anthropogenic earthquakes induced by the injection or extraction of fluids. This work addresses this problem through developing a computational 3D model to explore fault reactivation and evaluating the potential for earthquake triggering at preexisting geological faults. These are included in the model as frictional contacts that allow the relative displacement between both of its sides, governed by rate-and-state friction laws and fully coupled with thermo-hydro-mechanical equations. We apply our methodology to the Basel project, employing the on-site parameters and conditions. Our results demonstrate that earthquakes which occurred in December 2006 in Basel (Switzerland) are compatible with the geomechanical and frictional consequences of the hydraulic stimulation of the rock mass. The application of our model also shows that it can be useful for predicting fault reactivation and engineering injection protocols for managing the safe and sustainable operation of EGS.


SPE Journal ◽  
2015 ◽  
Vol 20 (04) ◽  
pp. 689-700 ◽  
Author(s):  
S.. Ameen ◽  
A. Dahi Taleghani

Summary Injectivity loss is a common problem in unconsolidated-sand formations. Injection of water into a poorly cemented granular medium may lead to internal erosion, and consequently formation of preferential flow paths within the medium because of channelization. Channelization in the porous medium might occur when fluid-induced stresses become locally larger than a critical threshold and small grains are dislodged and carried away; hence, porosity and permeability of the medium will evolve along the induced flow paths. Vice versa, flowback during shut-in might carry particles back to the well and cause sand accumulation inside the well, and subsequently loss of injectivity. In most cases, to maintain the injection rate, operators will increase injection pressure and pumping power. The increased injection pressure results in stress changes and possibly further changes in channel patterns around the wellbore. Experimental laboratory studies have confirmed the presence of the transition from uniform Darcy flow to a fingered-pattern flow. To predict these phenomena, a model is needed to fill this gap by predicting the formation of preferential flow paths and their evolution. A model based on the multiphase-volume-fraction concept is used to decompose porosity into mobile and immobile porosities where phases may change spatially, evolve over time, and lead to development of erosional channels depending on injection rates, viscosity, and rock properties. This model will account for both particle release and suspension deposition. By use of this model, a methodology is proposed to derive model parameters from routine injection tests by inverse analysis. The proposed model presents the characteristic behavior of unconsolidated formation during fluid injection and the possible effect of injection parameters on downhole-permeability evolution.


Author(s):  
S Gentier ◽  
X Rachez ◽  
M Peter-Borie ◽  
A Blaisonneau

Sign in / Sign up

Export Citation Format

Share Document