Unusual Atmospheric‐River‐Like Structures Coming From Africa Induce Extreme Precipitation Over the Western Mediterranean Sea

Author(s):  
R. Lorente‐Plazas ◽  
J. P. Montavez ◽  
A. M. Ramos ◽  
S. Jerez ◽  
R. M. Trigo ◽  
...  
2020 ◽  
Author(s):  
Raquel Lorente-Plazas ◽  
Alexandre M. Ramos ◽  
Juan P. Montávez ◽  
Sonia Jerez ◽  
Ricardo M. Trigo ◽  
...  

<p>Long filaments of high integrated water vapor transport (IVT) content, widely known as atmospheric rivers (ARs), play a relevant role in the water cycle being also associated with many extreme flooding events worldwide. In this work, we inspect whether similar structures can be found over the western Mediterranean. The methodology used here to detect these AR-like structures is based on standard ARs detection methods but imposing a strong IVT advection westward component. The ERA5 global reanalysis and Spain02 high resolution gridded observational dataset are used, covering the period 1979-2017, to analyze the composites of mesoscale features and associated impacts on rainfall.</p><p>Results show that AR-like structures over the Mediterranean (abbreviated here Med-ARs) have relatively low incidence with an approximately once-per-year frequency. Nevertheless, these rare events are usually associated with extreme precipitation, often amplified by orographic features, contributing to more than 40% to the annual precipitation in some cases (Lorente-Plazas et al., 2020). During a typical Med‐AR, the value of IVT increases significantly due to high horizontal winds and water vapor contents. Med-ARs are always associated to the placement of a cutoff cyclone with the cold core over northwestern Africa and warmer air mass over northern Europe. The vertical structure of Med-ARs suggests an occluded front with a low-level jet in the warmer front where Med‐ARs reside and, moisture penetrating into high atmospheric levels where cold and warm front intersect leading to severe convection. To sum up, long filaments of IVT can be found over the western Mediterranean Sea, traveling in an east-west direction, playing a relevant role in hydrometeorological impacts. Although these structures share some features with ARs over the Pacific/Atlantic Ocean they present so many specific characteristics that can be also considered to constitute a variant of this well-established meteorological phenomenon.</p><p> </p><p>Acknowledgments</p><p>The author would like to acknowledge the financial support by Fundação para a Ciência e Tecnologia (FCT) through project UIDB/50019/2020 – IDL. A. M. Ramos was supported by the Scientific Employment Stimulus 2017 from FCT (CEECIND/00027/2017).</p><p> </p><p>References</p><p>Lorente-Plazas, R., Montavez, J. P., Ramos, A. M., Jerez, S., Trigo, R. M., & Jimenez-Guerrero, P. (2019). Unusual Atmospheric-River-like structures coming from Africa induce extreme precipitation over western Mediterranean Sea. Journal of Geophysical Research: Atmospheres, 124. doi: 10.1029/2019JD031280</p>


2014 ◽  
Vol 59 (1) ◽  
Author(s):  
Salvatore Mele ◽  
Maria Pennino ◽  
Maria Piras ◽  
José Bellido ◽  
Giovanni Garippa ◽  
...  

AbstractThe metazoan parasite assemblage of the head of 30 specimens of the Atlantic chub mackerel (Scomber colias) from the western Mediterranean Sea was analysed. Eight species of parasites were found, four mazocraeid monogeneans: Grubea cochlear (prevalence = 10%), Kuhnia scombercolias (59%), K. scombri (52%), Pseudokuhnia minor (86%); three didymozoid trematodes: Nematobothrium cf. faciale (21%), N. filiforme (41%), N. scombri (7%); and one laerneopodid copepod: Clavelissa scombri (7%). Results were compared with previously published data from 14 localities of the eastern Mediterranean Sea and the Atlantic Ocean, using non-parametric univariate and multivariate analyses, and the whole parasite fauna of S. colias was compared with that of the congeners (S. australasicus, S. japonicus and S. scombrus). Parasites showed to reflect the biogeographical and phylogenetic history of host. From a methodological point of view, the use of both non-parametric univariate and multivariate techniques proved to be effective tools to detect dissimilarities between parasite assemblages.


2021 ◽  
Vol 9 (2) ◽  
pp. 208
Author(s):  
Valentina Vannucchi ◽  
Stefano Taddei ◽  
Valerio Capecchi ◽  
Michele Bendoni ◽  
Carlo Brandini

A 29-year wind/wave hindcast is produced over the Mediterranean Sea for the period 1990–2018. The dataset is obtained by downscaling the ERA5 global atmospheric reanalyses, which provide the initial and boundary conditions for a numerical chain based on limited-area weather and wave models: the BOLAM, MOLOCH and WaveWatch III (WW3) models. In the WW3 computational domain, an unstructured mesh is used. The variable resolutions reach up to 500 m along the coasts of the Ligurian and Tyrrhenian seas (Italy), the main objects of the study. The wind/wave hindcast is validated using observations from coastal weather stations and buoys. The wind validation provides velocity correlations between 0.45 and 0.76, while significant wave height correlations are much higher—between 0.89 and 0.96. The results are also compared to the original low-resolution ERA5 dataset, based on assimilated models. The comparison shows that the downscaling improves the hindcast reliability, particularly in the coastal regions, and especially with regard to wind and wave directions.


2007 ◽  
Vol 105 (1-2) ◽  
pp. 101-117 ◽  
Author(s):  
Tommaso Tesi ◽  
Stefano Miserocchi ◽  
Miguel A. Goñi ◽  
Leonardo Langone

Author(s):  
M. Carrassón ◽  
J. Matallanas

The present study examines the feeding habits of Alepocephalus rostratus, the only species of the family Alepocephalidae in the Mediterranean Sea and the second most important fish species, in terms of biomass, inhabiting the deep slope of the Catalan Sea. Samples were obtained at depths between 1000–2250 m. Diet was analysed for two different size-classes (immature and mature specimens) at three different bathymetric strata during two different seasons. The feeding habits of A. rostratus included a narrow range of mobile macroplanktonic organisms (e.g. Pyrosoma atlanticum and Chelophyes appendiculata) and some material of benthic origin. Pyrosoma atlanticum was the preferred prey item in spring at 1000–1425 m, being very scarce in summer at the same depth as a consequence of its scarcity in the environment during this season. There were some ontogenic differences in the diet of A. rostratus at 1425–2250 m. Adults ingested more and larger prey than juvenile specimens. The scarcity of resources below 1200–1400 m fostered a more diversified diet, as well as passive predation of sedimented material.


Sign in / Sign up

Export Citation Format

Share Document