scholarly journals Mean State Biases and Interannual Variability Affect Perceived Sensitivities of the Madden‐Julian Oscillation to Air‐Sea Coupling

Author(s):  
N. P. Klingaman ◽  
C. A. Demott
2021 ◽  
pp. 1-50
Author(s):  
Ruidan Chen ◽  
Zhiping Wen ◽  
Riyu Lu ◽  
Wenjun Liu

AbstractThis study reveals the interdecadal changes in the interannual variability of the summer temperature over Northeast Asia (NEA), which presents an enhancement around the early 1990s and a reduction after the mid-2000s. The stronger NEA temperature variability after the early 1990s is favored by the enhanced influence of the Pacific–Japan (PJ) teleconnection, which is remotely modulated by the southeastern tropical Indian Ocean (SETIO). After the early 1990s, the mean state over the SETIO presents relatively warmer SST and ascending motion, favoring a good relationship between the local SST and convection. Therefore, the SETIO SST could prominently influence the local convection and subsequently modulate the convection over the western North Pacific (WNP) via a cross-equatorial overturning circulation. The abnormal convection over the WNP further triggers the PJ teleconnection to influence NEA. However, these ocean–atmosphere processes disappear before the early 1990s. In this period, the mean state over the SETIO features relatively colder SST and subsiding motion, accompanied by a poor relationship between the local SST and convection. Therefore, the variability of convection over the SETIO is weak, thus the atmospheric variability over the WNP is also weakened and the PJ teleconnection presents a different distribution that could not influence NEA. The reduced variability of NEA temperature after the mid-2000s is related to the feeble influence of the PJ teleconnection and the reduced variability of the SETIO SST, which is modulated by the SST over the tropical central–eastern Pacific during the preceding winter to spring.


2021 ◽  
pp. 1-35
Author(s):  
Jiayu Zhang ◽  
Ping Huang ◽  
Fei Liu ◽  
Shijie Zhou

AbstractThis study investigates what forms the spatial pattern of the amplitude changes in tropical intraseasonal and interannual variability – represented by the two most important variables, precipitation (ΔP′) and circulation (Δω′) – under global warming, based on 24 models from the phase 5 of the Coupled Model Intercomparison Project (CMIP5). Diagnostic analyses reveal that the moisture budget and thermodynamic energy equations related to the ΔP′ and Δω′ proposed separately in previous studies are simultaneously tenable. As a result, we investigate the mechanism for the spatial pattern of Δω′ from the perspective of moist static energy (MSE) balance mainly considering the positive contribution from vertical advection. Therefore, based on the simplified MSE balance, the spatial pattern of Δω′ can be approximately projected based on three factors: background circulation variability ω′, the vertical gradient of mean-state MSE , and its future change Δ. Under global warming, the middle-level vertical gradient of MSE increases slightly over Indian Ocean and maritime continent and decreases over the equatorial Pacific where the increase in sea surface temperature (SST) exceeds the tropical mean. The vertical gradient of mean-state MSE is modified by the increase in vertical gradients of moisture and dry static energy (DSE) simultaneously. In short, the change in the vertical gradient of mean-state MSE under global warming can influence the moisture budget and thermodynamic energy balances, resulting in the spatial pattern of ΔP′ and Δω′ at intraseasonal and interannual timescales consequently, mainly determined by the lower boundary moisture condition in the response of SST change pattern.


2011 ◽  
Vol 24 (24) ◽  
pp. 6486-6500 ◽  
Author(s):  
Cheng Qian ◽  
Zhaohua Wu ◽  
Congbin Fu ◽  
Dongxiao Wang

Abstract This study investigates changes in the frequency of ENSO, especially the prolonged 1990–95 El Niño event, in the context of secular changes in the annual cycle, ENSO interannual variability, and background mean state of the tropical eastern Pacific sea surface temperature (SST). The ensemble empirical mode decomposition (EEMD) method is applied to isolate those components from the Niño-3 SST index for the period 1880–2008. It is shown that the annual cycle [referred to as a refined modulated annual cycle (MAC)] has strong interannual modulation and secular change in both amplitude and phase: a clear transition from increasing to decreasing amplitude around 1947/48, with both linear trends before and after this turning point statistically significant and the amplitude decreasing by 14% since then, and a significant phase delay trend for the period 1881–1938, but hardly any thereafter. A clear transition from significant deceasing to increasing by about 30% in the amplitude of the ENSO interannual variability around 1937 is also found. When El Niño events are represented as the collective interannual variability, their frequency is found to be almost equivalent to that of La Niña events after 1976. A method for conducting synthetic experiments based on time series analysis further reveals that the apparent prolonged 1990–95 El Niño event was not caused solely by ENSO interannual variability. Rather, the 1991/92 warm period is attributable to an interannual variation superimposed by change in the background mean state; the 1993 warm period is attributable to change in the mean state; and the 1994/95 warm period is attributable to a residual annual cycle, which cannot be fully excluded by a 30-yr mean annual cycle approach. The impact that changing base periods has on the classification of ENSO events and possible solutions is also discussed.


2006 ◽  
Vol 19 (11) ◽  
pp. 2162-2183 ◽  
Author(s):  
James W. Hurrell ◽  
James J. Hack ◽  
Adam S. Phillips ◽  
Julie Caron ◽  
Jeffrey Yin

Abstract The dynamical simulation of the latest version of the Community Atmosphere Model (CAM3) is examined, including the seasonal variation of its mean state and its interannual variability. An ensemble of integrations forced with observed monthly varying sea surface temperatures and sea ice concentrations is compared to coexisting observations. The most significant differences from the previous version of the model [Community Climate Model version 3 (CCM3)] are associated with changes to the parameterized physics package. Results show that these changes have resulted in a modest improvement in the overall simulated climate; however, CAM3 continues to share many of the same biases exhibited by CCM3. At sea level, CAM3 reproduces the basic observed patterns of the pressure field. Simulated surface pressures are higher than observed over the subtropics, however, an error consistent with an easterly bias in the simulated trade winds and low-latitude surface wind stress. The largest regional differences over the Northern Hemisphere (NH) occur where the simulated highs over the eastern Pacific and Atlantic Oceans are too strong during boreal winter, and erroneously low pressures at higher latitudes are most notable over Europe and Eurasia. Over the Southern Hemisphere (SH), the circumpolar Antarctic trough is too deep throughout the year. The zonal wind structure in CAM3 is close to that observed, although the middle-latitude westerlies are too strong in both hemispheres throughout the year, consistent with errors in the simulated pressure field and the transient momentum fluxes. The observed patterns and magnitudes of upper-level divergent outflow are also well simulated by CAM3, a finding consistent with an improved and overall realistic simulation of tropical precipitation. There is, however, a tendency for the tropical precipitation maxima to remain in the NH throughout the year, while precipitation tends to be less than indicated by satellite estimates along the equator. The CAM3 simulation of tropical intraseasonal variability is quite poor. In contrast, observed changes in tropical and subtropical precipitation and the atmospheric circulation changes associated with tropical interannual variability are well simulated. Similarly, principal modes of extratropical variability bear considerable resemblance to those observed, although biases in the mean state degrade the simulated structure of the leading mode of NH atmospheric variability.


Sign in / Sign up

Export Citation Format

Share Document