scholarly journals Analysis of the Effects of Dam Release Properties and Ambient Groundwater Flow on Surface Water‐Groundwater Exchange Over a 100‐km‐Long Reach

2019 ◽  
Vol 55 (11) ◽  
pp. 8526-8546 ◽  
Author(s):  
Stephen B. Ferencz ◽  
M. Bayani Cardenas ◽  
Bethany T. Neilson
2018 ◽  
Vol 23 (2) ◽  
pp. 261-287
Author(s):  
Scott J. Ikard ◽  
Andrew P. Teeple ◽  
Jason D. Payne ◽  
Gregory P. Stanton ◽  
J. Ryan Banta

In south-central Texas the lower Guadalupe River has incised into the outcrop of the Carrizo-Wilcox aquifer. The river and the aquifer are hydraulically connected across the outcrop, although the connectivity is obscured at the surface by alluvium and surface-water and groundwater exchange dynamics are currently poorly understood. To investigate surface-water and groundwater exchange dynamics between the lower Guadalupe River and the Carrizo-Wilcox aquifer, a geophysical study was completed along a 14.86 km reach of the river by using water-borne gradient self-potential (SP) profiling and two-dimensional direct-current electric resistivity tomography. This paper explores the applicability of these water-borne geoelectric methods in delineating gaining and losing channel reaches, and demonstrates that geoelectric signals in the form of total electric field strength can be logged with an electric dipole and decomposed into component SP signals depicting regional and local groundwater flow patterns attributable to regional and localized hydraulic gradients. Localized SP anomalies of several tens of millivolts, indicative of hyporheic exchange flows, are observed and superimposed upon a 124 mV regional SP anomaly indicative of ambient groundwater exchange flows between the river and the aquifer. The observed SP signals are interpreted through two-dimensional finite-element modeling of streaming potentials attributable to ambient groundwater exchange and hyporheic exchange flow patterns. Variables of the channel environment such as temperature and concentration gradients, depth, and velocity are considered and subsequently eliminated as alternative sources of the SP signals that are presented.


2021 ◽  
Author(s):  
Goedele Verreydt ◽  
Niels Van Putte ◽  
Timothy De Kleyn ◽  
Joris Cool ◽  
Bino Maiheu

<p>Groundwater dynamics play a crucial role in the spreading of a soil and groundwater contamination. However, there is still a big gap in the understanding of the groundwater flow dynamics. Heterogeneities and dynamics are often underestimated and therefore not taken into account. They are of crucial input for successful management and remediation measures. The bulk of the mass of mass often is transported through only a small layer or section within the aquifer and is in cases of seepage into surface water very dependent to rainfall and occurring tidal effects.</p><p> </p><p>This study contains the use of novel real-time iFLUX sensors to map the groundwater flow dynamics over time. The sensors provide real-time data on groundwater flow rate and flow direction. The sensor probes consist of multiple bidirectional flow sensors that are superimposed. The probes can be installed directly in the subsoil, riverbed or monitoring well. The measurement setup is unique as it can perform measurements every second, ideal to map rapid changing flow conditions. The measurement range is between 0,5 and 500 cm per day.</p><p> </p><p>We will present the measurement principles and technical aspects of the sensor, together with two case studies.</p><p> </p><p>The first case study comprises the installation of iFLUX sensors in 4 different monitoring wells in a chlorinated solvent plume to map on the one hand the flow patterns in the plume, and on the other hand the flow dynamics that are influenced by the nearby popular trees. The foreseen remediation concept here is phytoremediation. The sensors were installed for a period of in total 4 weeks. Measurement frequency was 5 minutes. The flow profiles and time series will be presented together with the determined mass fluxes.</p><p> </p><p>A second case study was performed on behalf of the remediation of a canal riverbed. Due to industrial production of tar and carbon black in the past, the soil and groundwater next to the small canal ‘De Lieve’ in Ghent, Belgium, got contaminated with aliphatic and (poly)aromatic hydrocarbons. The groundwater contaminants migrate to the canal, impact the surface water quality and cause an ecological risk. The seepage flow and mass fluxes of contaminants into the surface water were measured with the novel iFLUX streambed sensors, installed directly in the river sediment. A site conceptual model was drawn and dimensioned based on the sensor data. The remediation concept to tackle the inflowing pollution: a hydraulic conductive reactive mat on the riverbed that makes use of the natural draining function of the waterbody, the adsorption capacity of a natural or secondary adsorbent and a future habitat for micro-organisms that biodegrade contaminants. The reactive mats were successfully installed and based on the mass flux calculations a lifespan of at least 10 years is expected for the adsorption material.  </p>


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohammad Ainul Labib ◽  
Agung Suprianto ◽  
Devi Prasetyo ◽  
Aan Seftian Hardianto ◽  
Alfi Sahrina ◽  
...  

Bagus-Jebrot Cave is located in Donomulyo District, Malang Regency which is in the Wonosari Formation which was formed in the Middle Miocene and Late Miocene. The purpose of this study is related to the developmental control that affects the cave passageways. The approach used is a geomorphological approach by conducting field measurements and documentation. The analysis used is frequency analysis and cross-section of the passage. Bagus-Jebrot Cave is a type of Epigenic Cave which is formed from surface water flowing into doline/sinkhole. It can be seen from the planview map that has a curvilinear passage pattern. The existence of groundwater flow also forms a physiographic cave passage with ellipse passage formation, asymmetrical ellipse, potholes, callops, solution notches, cups, solution pockets. Besides underground water flow, the development of the Bagus-Jebrot Cave aisle is related to the process of structural lifting and control. The lifting process is marked by the formation of 4 levels of the cave passage. While the formation of the canyon, joint passage, rectangular passage and keyhole is the result of structural control


2010 ◽  
Vol 392 (1-2) ◽  
pp. 1-11 ◽  
Author(s):  
Robert J. Ryan ◽  
Claire Welty ◽  
Philip C. Larson

2003 ◽  
Vol 30 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Sung-Hoon Ji ◽  
In Wook Yeo ◽  
Kang-Kun Lee ◽  
Robert J. Glass

Sign in / Sign up

Export Citation Format

Share Document