scholarly journals Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model

2012 ◽  
Vol 458-459 ◽  
pp. 28-39 ◽  
Author(s):  
D. Partington ◽  
P. Brunner ◽  
C.T. Simmons ◽  
A.D. Werner ◽  
R. Therrien ◽  
...  
2020 ◽  
Author(s):  
Yosuke Miura ◽  
Kei Yoshimura

<p>  Groundwater is one of the important water resources in the world and Groundwater flow is linked with surface water strongly. Many studies on groundwater are conducted in a local scale or focused on affect-ing surface water in a global scale. In current Earth System Model, fixed and constant one-dimensional vertical grid is used in unsaturated zone. In real world, the thickness of unsatu-rated zone depends on the climate and it is considered that there are limitations of runoff process expression especially in humid mountainous area. In this study, we developed three-dimensional groundwater flow model as ESM which can represent the variably saturated flow and groundwa-ter storativity. Since, this model is eventually coupled with Land Surface Model, it is possible to track the underground water flow using boundary conditions of recharge and surface water level.</p><p>  We verified accuracy of the code using one & two-dimensional infiltration problem, three-dimensional groundwater pumping problem, and hillslope problem. Our model was com-pared with other researchers results, experimental data, analytical solutions. In consequence, our model was able to get accurate results. Subsequently, we conducted validation in Central valley, California, USA. The reason of chose this region is that this region is a semi-arid region, ground-water is used for irrigation and well pumping data is accessible. Over the world, groundwater use is more important in arid or semi-arid region than in humid area, and also highly utilized as agri-cultural water. Central valley has representativeness of groundwater use. In addition, the famous groundwater model, MODFLOW, was used to evaluate water resource management in this region. As well as MODFLOW, we calibrated hydraulic conductivity with 24 observation sites during 1961 - 2003 to validate. 156 observation points excluded 24 calibration points were used as vali-dation in same period. In the near future, we will confirm the difference between one-dimension and three dimensions setting of the unsaturated zone with respect to runoff process.</p>


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Ioannis Gkiougkis ◽  
Christos Pouliaris ◽  
Fotios-Konstantinos Pliakas ◽  
Ioannis Diamantis ◽  
Andreas Kallioras

In this paper, the development of the conceptual and groundwater flow model for the coastal aquifer system of the alluvial plain of River Nestos (N. Greece), that suffers from seawater intrusion due to over-pumping for irrigation, is analyzed. The study area is a typical semi-arid hydrogeologic environment, composed of a multi-layer granular aquifers that covers the eastern coastal delta system of R. Nestos. This study demonstrates the results of a series of field measurements (such as geophysical surveys, hydrochemical and isotopical measurements, hydro-meteorological data, land use, irrigation schemes) that were conducted during the period 2009 to 2014. The synthesis of the above resulted in the development of the conceptual model for this aquifer system, that formed the basis for the application of the mathematical model for simulating groundwater flow. The mathematical modeling was achieved using the finite difference method after the application of the USGS code MODFLOW-2005.


Author(s):  
Samrit Luoma ◽  
Juha Majaniemi ◽  
Arto Pullinen ◽  
Juha Mursu ◽  
Joonas J. Virtasalo

AbstractThree-dimensional geological and groundwater flow models of a submarine groundwater discharge (SGD) site at Hanko (Finland), in the northern Baltic Sea, have been developed to provide a geological framework and a tool for the estimation of SGD rates into the coastal sea. The dataset used consists of gravimetric, ground-penetrating radar and shallow seismic surveys, drill logs, groundwater level monitoring data, field observations, and a LiDAR digital elevation model. The geological model is constrained by the local geometry of late Pleistocene and Holocene deposits, including till, glacial coarse-grained and fine-grained sediments, post-glacial mud, and coarse-grained littoral and aeolian deposits. The coarse-grained aquifer sediments form a shallow shore platform that extends approximately 100–250 m offshore, where the unit slopes steeply seawards and becomes covered by glacial and post-glacial muds. Groundwater flow preferentially takes place in channel-fill outwash coarse-grained sediments and sand and gravel interbeds that provide conduits of higher hydraulic conductivity, and have led to the formation of pockmarks on the seafloor in areas of thin or absent mud cover. The groundwater flow model estimated the average SGD rate per square meter of the seafloor at 0.22 cm day−1 in autumn 2017. The average SGD rate increased to 0.28 cm day−1 as a response to an approximately 30% increase in recharge in spring 2020. Sensitivity analysis shows that recharge has a larger influence on SGD rate compared with aquifer hydraulic conductivity and the seafloor conductance. An increase in recharge in this region will cause more SGD into the Baltic Sea.


Sign in / Sign up

Export Citation Format

Share Document