scholarly journals Systematical Analyses of Global Ionospheric Disturbance Current Systems Caused by Multiple Processes: Penetration Electric Fields, Solar Wind Pressure Impulses, Magnetospheric Substorms, and ULF Waves

2020 ◽  
Vol 125 (9) ◽  
Author(s):  
Chao‐Song Huang
2011 ◽  
Vol 51 (7) ◽  
pp. 979-993 ◽  
Author(s):  
V. A. Parkhomov ◽  
N. L. Borodkova ◽  
A. V. Dmitriev ◽  
P. M. Klimov ◽  
R. A. Rakhmatulin

2017 ◽  
Vol 122 (8) ◽  
pp. 8446-8461 ◽  
Author(s):  
N. Takahashi ◽  
Y. Kasaba ◽  
Y. Nishimura ◽  
A. Shinbori ◽  
T. Kikuchi ◽  
...  

2003 ◽  
Vol 21 (2) ◽  
pp. 559-576 ◽  
Author(s):  
F. W. Menk ◽  
T. K. Yeoman ◽  
D. M. Wright ◽  
M. Lester ◽  
F. Honary

Abstract. We report the simultaneous observation of 1.6–1.7 mHz pulsations in the ionospheric F-region with the CUTLASS bistatic HF radar and an HF Doppler sounder, on the ground with the IMAGE and SAMNET magnetometer arrays, and in the upstream solar wind. CUTLASS was at the time being operated in a special mode optimized for high resolution studies of ULF waves. A novel use is made of the ground returns to detect the ionospheric signature of ULF waves. The pulsations were initiated by a strong, sharp decrease in solar wind dynamic pressure near 09:28 UT on 23 February 1996, and persisted for some hours. They were observed with the magnetometers over 20° in latitude, coupling to a field line resonance near 72° magnetic latitude. The magnetic pulsations had azimuthal m numbers ~ -2, consistent with propagation away from the noon sector. The radars show transient high velocity flows in the cusp and auroral zones, poleward of the field line resonance, and small amplitude 1.6–1.7 mHz F-region oscillations across widely spaced regions at lower latitudes. The latter were detected in the radar ground scatter returns and also with the vertical incidence Doppler sounder. Their amplitude is of the order of ± 10 ms-1. A similar perturbation frequency was present in the solar wind pressure recorded by the WIND spacecraft. The initial solar wind pressure decrease was also associated with a decrease in cosmic noise absorption on an imaging riometer near 66° magnetic latitude. The observations suggest that perturbations in the solar wind pressure or IMF result in fast compressional mode waves that propagate through the magnetosphere and drive forced and resonant oscillations of geomagnetic field lines. The compressional wave field may also stimulate ionospheric perturbations. The observations demonstrate that HF radar ground scatter may contain important information on small-amplitude features, extending the scope and capability of these radars to track features in the ionosphere.Key words. Ionosphere (Ionosphere-magnetosphere interactions; ionospheric disturbances) – Magnetospheric physics (MHD waves and instabilities)


2005 ◽  
Vol 23 (2) ◽  
pp. 593-608 ◽  
Author(s):  
D. V. Sarafopoulos

Abstract. In this work we study four representative cases of Pc5 ground pulsation events with discrete and remarkably stable frequencies extended at least in a high-latitude range of ~20°; a feature that erroneously gives the impression for an oscillation mode with "one resonant field line". Additionally, the presented events show characteristic changes in polarization sense, for a meridian chain of stations from the IMAGE array, and maximize their amplitude at or close to the supposed resonant magnetic field shell, much like the typical FLR. Nevertheless, they are not authentic FLRs, but pseudo-FLRs, as they are called. These structures are produced by repetitive and tilted twin-vortex structures caused by magnetopause surface waves, which are probably imposed by solar wind pressure waves. The latter is confirmed with in-situ measurements obtained by the Cluster satellites, as well as the Geotail, Wind, ACE, and LANL 1994-084 satellites. This research effort is largely based on two recent works: first, Sarafopoulos (2004a) has observationally established that a solar wind pressure pulse (stepwise pressure variation) produces a twin-vortex (single vortex) current system over the ionosphere; second, Sarafopoulos (2004b) has studied ground events with characteristic dispersive latitude-dependent structures and showed that these are associated with twin-vortex ionosphere current systems. In this work, we show that each pseudo-FLR event is associated with successive and tilted large-scale twin-vortex current systems corresponding to a magnetopause surface wave with wavelength 10-20RE. We infer that between an authentic FLR, which is a spatially localized structure with an extent 0.5RE in the magnetospheric equatorial plane, and the magnetopause surface wavelength, there is a scale factor of 20-40. A chief observational finding, in this work, is that there are Pc5 ground pulsation events showing two gradual and latitude dependent phase-shifts of 180°, at the same time.


2002 ◽  
Vol 20 (5) ◽  
pp. 639-645 ◽  
Author(s):  
A. Vontrat-Reberac ◽  
J.-C. Cerisier ◽  
N. Sato ◽  
M. Lester

Abstract. Using experimental data from the Cutlass Super-DARN HF radars and from a subset of ground magnetometers of the IMAGE Scandinavian chain, the response of the ionosphere in the noon sector to a solar wind pressure increase is studied. The emphasis is on the signature of the convection vortices and of the Hall currents that are associated with the pair of opposite parallel currents flowing along the morning and afternoon high-latitude magnetic field lines. We show that the sudden commencement is characterised by an equatorward convection, immediately followed (within less than 3 min) by a strong poleward plasma motion. These results are shown to agree qualitatively with the global model of sudden commencement of Araki (1994).Key words. Ionosphere (plasma convection; electric fields and currents) – Magnetospheric physics (solar wind-magnetosphere interactions)


2020 ◽  
Author(s):  
Jie Ren ◽  
Qiugang Zong ◽  
Chao Yue ◽  
Xuzhi Zhou

<p>Here we report the observations of the simultaneously formed energy dispersion structures of proton, oxygen and helium ions in the inner magnetospehre using Van Allen Probes data. The energy of the ourter edge of this sturcture is only several eV, and the energy of this structure is increasing with the decreasing L shell, which can be up to several keV especially for oxygen ions. The energy dispersion structure has a larger upper energy limit for the particle species with largher mass. But the upper velocity limits for different ion species are almost the same, which indicates that these different ions are accelerated by electric fields via the <strong>E</strong>x<strong>B </strong>drift. A statistical study with four years data shows that 1. This kind of structure is mainly distributed in the duskside and nighside; 2. The upper velocity for the oxygen ion exhibits a linear relation with both proton and helium ions; 3. The relationship between the occurrence rates and different parameters such as solar wind velocity, solar wind pressure, SYMH, Kp and AE index indicates that the formation of this structure is probably related to substorm activities.</p>


2009 ◽  
Vol 27 (6) ◽  
pp. 2457-2474 ◽  
Author(s):  
C. Forsyth ◽  
M. Lester ◽  
R. C. Fear ◽  
E. Lucek ◽  
I. Dandouras ◽  
...  

Abstract. Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002). We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005) and Erkaev et al. (2008). We find that the Erkaev et al. (2008) model gives the best fit to the observations.


1994 ◽  
Vol 142 ◽  
pp. 531-539
Author(s):  
Ramon E. Lopez ◽  
Daniel N. Baker

AbstractMagnetospheric substorms represent the episodic dissipation of energy stored in the geomagnetic tail that was previously extracted from the solar wind. This energy release produces activity throughout the entire magnetosphere-ionosphere system, and it results in a wide variety of phenomena such as auroral intensifications and the generation of new current systems. All of these phenomena involve the acceleration of particles, sometimes up to several MeV. In this paper we present a brief overview of substorm phenomenology. We then review some of the evidence for particle acceleration in Earth’s magnetosphere during substorms. Such in situ observations in this most accessible of all cosmic plasma domains may hold important clues to understanding acceleration processes in more distant astrophysical systems.Subject headings: acceleration of particles — Earth — solar wind


1971 ◽  
Vol 2 ◽  
pp. 173-188
Author(s):  
C. P. Sonett ◽  
P. Dyal ◽  
D. S. Colburn ◽  
B. F. Smith ◽  
G. Schubert ◽  
...  

AbstractIt is shown that the Moon possesses an extraordinary response to induction from the solar wind due to a combination of a high interior electrical conductivity together with a relatively resistive crustal layer into which the solar wind dynamic pressure forces back the induced field. The dark side response, devoid of solar wind pressure, is approximately that expected for the vacuum case. These data permit an assessment of the interior conductivity and an estimate of the thermal gradient in the crustal region. The discovery of a large permanent magnetic field at the Apollo 12 site corresponds approximately to the paleomagnetic residues discovered in both Apollo 11 and 12 rock samples The implications regarding an early lunar magnetic field are discussed and it is shown that among the various conjectures regarding the early field the most prominent are either an interior dynamo or an early approach to the Earth though no extant model is free of difficulties.


Sign in / Sign up

Export Citation Format

Share Document