SeismoGen: Seismic Waveform Synthesis Using GAN with Application to Seismic Data Augmentation

Author(s):  
Tiantong Wang ◽  
Daniel Trugman ◽  
Youzuo Lin
Author(s):  
Michael Gineste ◽  
Jo Eidsvik

AbstractAn ensemble-based method for seismic inversion to estimate elastic attributes is considered, namely the iterative ensemble Kalman smoother. The main focus of this work is the challenge associated with ensemble-based inversion of seismic waveform data. The amount of seismic data is large and, depending on ensemble size, it cannot be processed in a single batch. Instead a solution strategy of partitioning the data recordings in time windows and processing these sequentially is suggested. This work demonstrates how this partitioning can be done adaptively, with a focus on reliable and efficient estimation. The adaptivity relies on an analysis of the update direction used in the iterative procedure, and an interpretation of contributions from prior and likelihood to this update. The idea is that these must balance; if the prior dominates, the estimation process is inefficient while the estimation is likely to overfit and diverge if data dominates. Two approaches to meet this balance are formulated and evaluated. One is based on an interpretation of eigenvalue distributions and how this enters and affects weighting of prior and likelihood contributions. The other is based on balancing the norm magnitude of prior and likelihood vector components in the update. Only the latter is found to sufficiently regularize the data window. Although no guarantees for avoiding ensemble divergence are provided in the paper, the results of the adaptive procedure indicate that robust estimation performance can be achieved for ensemble-based inversion of seismic waveform data.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. O47-O56 ◽  
Author(s):  
Zhiguo Wang ◽  
Bing Zhang ◽  
Jinghuai Gao ◽  
Qingzhen Wang ◽  
Qing Huo Liu

Using the continuous wavelet transform (CWT), the time-frequency analysis of reflection seismic data can provide significant information to delineate subsurface reservoirs. However, CWT is limited by the Heisenberg uncertainty principle, with a trade-off between time and frequency localizations. Meanwhile, the mother wavelet should be adapted to the real seismic waveform. Therefore, for a reflection seismic signal, we have developed a progressive wavelet family that is referred to as generalized beta wavelets (GBWs). By varying two parameters controlling the wavelet shapes, the time-frequency representation of GBWs can be given sufficient flexibility while remaining exactly analytic. To achieve an adaptive trade-off between time-frequency localizations, an optimization workflow is designed to estimate suitable parameters of GBWs in the time-frequency analysis of seismic data. For noise-free and noisy synthetic signals from a depositional cycle model, the results of spectral component using CWT with GBWs display its flexibility and robustness in the adaptive time-frequency representation. Finally, we have applied CWT with GBWs on 3D seismic data to show its potential to discriminate stacked fluvial channels in the vertical sections and to delineate more distinct fluvial channels in the horizontal slices. CWT with GBWs provides a potential technique to improve the resolution of exploration seismic interpretation.


1997 ◽  
Vol 37 (1) ◽  
pp. 31
Author(s):  
P.J. Ryan ◽  
T.E. Vinson

In order to achieve successful drilling results on mature fields, geophysical analysis has become increasingly focussed on the application of high precision 3D seismic interpretation and analysis techniques. These techniques were critical to the success of the re-development program recently completed on the Fortescue Field* Gippsland Basin. Fortescue, initially developed in 1983, contains an estimated oil reserve of 300 million barrels. The field is currently over 80 percent depleted. To offset declining production and develop remaining reserves, an 18 well additional drilling program together with upgrades to platform topsides and production facilities was conducted on the field from October 1994 to October 1996.Many of the proposed additional drilling opportunities relied on oil being trapped structurally updip from existing completions. Given the size (approx. 1 MSTB) and subtle, low relief nature of the targets being pursued, the precision of conventional 3D seismic interpretation techniques was inadequate to optimise the location of wells. This necessitated the development of a series of specific tools that could provide high resolution definition of both the trap and lithology as well as optimising well placement.These high precision interpretation techniques include: reservoir subcrop edge prediction through qualitative calibration of geological models to seismic data: the assessment of overburden velocity distortions of the seismic time field by utilising isochron mapping and interval attribute analysis; and prediction of trap geometries and lateral stratigraphic variations by the application of seismic waveform attributes.The application of these advanced 3D seismic interpretation techniques and their integration with related geoscience and engineering technologies resulted in the completion of a successful 18 well re-development program for the Fortescue field.


2021 ◽  
pp. 1-97
Author(s):  
Lingxiao Jia ◽  
Subhashis Mallick ◽  
Cheng Wang

The choice of an initial model for seismic waveform inversion is important. In matured exploration areas with adequate well control, we can generate a suitable initial model using well information. However, in new areas where well control is sparse or unavailable, such an initial model is compromised and/or biased by the regions with more well controls. Even in matured exploration areas, if we use time-lapse seismic data to predict dynamic reservoir properties, an initial model, that we obtain from the existing preproduction wells could be incorrect. In this work, we outline a new methodology and workflow for a nonlinear prestack isotropic elastic waveform inversion. We call this method a data driven inversion, meaning that we derive the initial model entirely from the seismic data without using any well information. By assuming a locally horizonal stratification for every common midpoint and starting from the interval P-wave velocity, estimated entirely from seismic data, our method generates pseudo wells by running a two-pass one-dimensional isotropic elastic prestack waveform inversion that uses the reflectivity method for forward modeling and genetic algorithm for optimization. We then use the estimated pseudo wells to build the initial model for seismic inversion. By applying this methodology to real seismic data from two different geological settings, we demonstrate the usefulness of our method. We believe that our new method is potentially applicable for subsurface characterization in areas where well information is sparse or unavailable. Additional research is however necessary to improve the compute-efficiency of the methodology.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. B1-B12 ◽  
Author(s):  
Josiane Pafeng ◽  
Subhashis Mallick ◽  
Hema Sharma

Applying seismic inversion to estimate subsurface elastic earth properties for reservoir characterization is a challenge in exploration seismology. In recent years, waveform-based seismic inversions have gained popularity, but due to high computational costs, their applications are limited, and amplitude-variation-with-offset/angle inversion is still the current state-of-the-art. We have developed a genetic-algorithm-based prestack seismic waveform inversion methodology. By parallelizing at multiple levels and assuming a locally 1D structure such that forward computation of wave equation synthetics is computationally efficient, this method is capable of inverting 3D prestack seismic data on parallel computers. Applying this inversion to a real prestack seismic data volume from the Rock Springs Uplift (RSU) located in Wyoming, USA, we determined that our method is capable of inverting the data in a reasonable runtime and producing much higher quality results than amplitude-variation-with-offset/angle inversion. Because the primary purpose for seismic data acquisition at the RSU was to characterize the subsurface for potential targets for carbon dioxide sequestration, we also identified and analyzed some potential primary and secondary storage formations and their associated sealing lithologies from our inversion results.


Author(s):  
Ryosuke Kaneko ◽  
Hiromichi Nagao ◽  
Shin-ichi Ito ◽  
Kazushige Obara ◽  
Hiroshi Tsuruoka

AbstractThe installation of dense seismometer arrays in Japan approximately 20 years ago has led to the discovery of deep low-frequency tremors, which are oscillations clearly different from ordinary earthquakes. As such tremors may be related to large earthquakes, it is an important issue in seismology to investigate tremors that occurred before establishing dense seismometer arrays. We use deep learning aiming to detect evidence of tremors from past seismic data of more than 50 years ago, when seismic waveforms were printed on paper. First, we construct a convolutional neural network (CNN) based on the ResNet architecture to extract tremors from seismic waveform images. Experiments applying the CNN to synthetic images generated according to seismograph paper records show that the trained model can correctly determine the presence of tremors in the seismic waveforms. In addition, the gradient-weighted class activation mapping clearly indicates the tremor location on each image. Thus, the proposed CNN has a strong potential for detecting tremors on numerous paper records, which can enable to deepen the understanding of the relations between tremors and earthquakes.


Author(s):  
Christos P. Evangelidis ◽  
Nikolaos Triantafyllis ◽  
Michalis Samios ◽  
Kostas Boukouras ◽  
Kyriakos Kontakos ◽  
...  

Abstract The National Observatory of Athens data center for the European Integrated Data Archive (EIDA@NOA) is the national and regional node that supports International Federation of Digital Seismograph Networks and related webservices for seismic waveform data coming from the southeastern Mediterranean and the Balkans. At present, it serves data from eight permanent broadband and strong-motion networks from Greece and Cyprus, individual stations from the Balkans, temporary networks and aftershock deployments, and earthquake engineering experimental facilities. EIDA@NOA provides open and unlimited access from redundant node end points, intended mainly for research purposes (see Data and Resources). Analysis and quality control of the complete seismic data archive is performed initially by calculating waveform metrics and data availability. Seismic ambient noise metrics are estimated based on power spectral densities, and an assessment of each station’s statistical mode is achieved within each network and across networks. Moreover, the minimum ambient noise level expected for strong-motion installations is defined. Sensor orientation is estimated using surface-wave polarization methods to detect stations with misalignment on particular epochs. A single data center that hosts the complete seismic data archives with their respective metadata from networks covering similar geographical areas allows coordination between network operators and facilitates the adhesion to widely used best practices regarding station installation, data curation, and metadata definition. The overall achievement is harmonization among all contributing networks and a wider usage of all data archives, ultimately strengthening seismological research efforts in the region.


2020 ◽  
Vol 8 (2) ◽  
pp. T441-T451
Author(s):  
Shengjun Li ◽  
Bo Zhang ◽  
Xueshan Yong ◽  
Wang Shangxu

Fluid movement and grain boundary friction are the two main factors affecting the anelastic attenuation of seismic data. The quality factor ([Formula: see text]) quantifies the degree of anelastic attenuation and is commonly used in assisting the identification of gas reservoirs. We can accurately compute [Formula: see text] if we obtain the accurate amplitude spectrum of seismic wavelets at refereed and at target time indexes of the seismic profile. However, it is very difficult to obtain the accurate wavelets at the referred and target time indexes. Instead, we usually compare the changes of the amplitude spectrum of refereed and target seismic waveform. The seismic waveform is the convolution result between the seismic wavelet and the reflectivity series. Thus, the reflectivity series would affect our [Formula: see text] computation. We have assumed that the changes of the reflectivity series are negligible within one common-midpoint gather. Then the effect of relativity to the seismic spectrum is the same for the same seismic waveform at different offsets. The seismic waveforms at near offsets are treated as referred seismic signals, and the seismic waveforms at medium and far offsets are regarded as target seismic signals. We use simulated annealing to simultaneously obtain [Formula: see text] values at the entire time index of seismic traces. The method is applied to synthetic and real seismic data to demonstrate its validity and effectiveness. Both applications illustrate the effectiveness of the method in estimating seismic attenuation.


Sign in / Sign up

Export Citation Format

Share Document