Seismic Waveform Inversion: Practical aspects and Application to field seismic data

2003 ◽  
Vol 2003 (2) ◽  
pp. 1-4
Author(s):  
Mrinal K. Sen ◽  
Indrajit G. Roy
2021 ◽  
pp. 1-97
Author(s):  
Lingxiao Jia ◽  
Subhashis Mallick ◽  
Cheng Wang

The choice of an initial model for seismic waveform inversion is important. In matured exploration areas with adequate well control, we can generate a suitable initial model using well information. However, in new areas where well control is sparse or unavailable, such an initial model is compromised and/or biased by the regions with more well controls. Even in matured exploration areas, if we use time-lapse seismic data to predict dynamic reservoir properties, an initial model, that we obtain from the existing preproduction wells could be incorrect. In this work, we outline a new methodology and workflow for a nonlinear prestack isotropic elastic waveform inversion. We call this method a data driven inversion, meaning that we derive the initial model entirely from the seismic data without using any well information. By assuming a locally horizonal stratification for every common midpoint and starting from the interval P-wave velocity, estimated entirely from seismic data, our method generates pseudo wells by running a two-pass one-dimensional isotropic elastic prestack waveform inversion that uses the reflectivity method for forward modeling and genetic algorithm for optimization. We then use the estimated pseudo wells to build the initial model for seismic inversion. By applying this methodology to real seismic data from two different geological settings, we demonstrate the usefulness of our method. We believe that our new method is potentially applicable for subsurface characterization in areas where well information is sparse or unavailable. Additional research is however necessary to improve the compute-efficiency of the methodology.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. B1-B12 ◽  
Author(s):  
Josiane Pafeng ◽  
Subhashis Mallick ◽  
Hema Sharma

Applying seismic inversion to estimate subsurface elastic earth properties for reservoir characterization is a challenge in exploration seismology. In recent years, waveform-based seismic inversions have gained popularity, but due to high computational costs, their applications are limited, and amplitude-variation-with-offset/angle inversion is still the current state-of-the-art. We have developed a genetic-algorithm-based prestack seismic waveform inversion methodology. By parallelizing at multiple levels and assuming a locally 1D structure such that forward computation of wave equation synthetics is computationally efficient, this method is capable of inverting 3D prestack seismic data on parallel computers. Applying this inversion to a real prestack seismic data volume from the Rock Springs Uplift (RSU) located in Wyoming, USA, we determined that our method is capable of inverting the data in a reasonable runtime and producing much higher quality results than amplitude-variation-with-offset/angle inversion. Because the primary purpose for seismic data acquisition at the RSU was to characterize the subsurface for potential targets for carbon dioxide sequestration, we also identified and analyzed some potential primary and secondary storage formations and their associated sealing lithologies from our inversion results.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. R87-R99 ◽  
Author(s):  
Jian Sun ◽  
Zhan Niu ◽  
Kristopher A. Innanen ◽  
Junxiao Li ◽  
Daniel O. Trad

Deep-learning techniques appear to be poised to play very important roles in our processing flows for inversion and interpretation of seismic data. The most successful seismic applications of these complex pattern-identifying networks will, presumably, be those that also leverage the deterministic physical models on which we normally base our seismic interpretations. If this is true, algorithms belonging to theory-guided data science, whose aim is roughly this, will have particular applicability in our field. We have developed a theory-designed recurrent neural network (RNN) that allows single- and multidimensional scalar acoustic seismic forward-modeling problems to be set up in terms of its forward propagation. We find that training such a network and updating its weights using measured seismic data then amounts to a solution of the seismic inverse problem and is equivalent to gradient-based seismic full-waveform inversion (FWI). By refining these RNNs in terms of optimization method and learning rate, comparisons are made between standard deep-learning optimization and nonlinear conjugate gradient and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimized algorithms. Our numerical analysis indicates that adaptive moment (or Adam) optimization with a learning rate set to match the magnitudes of standard FWI updates appears to produce the most stable and well-behaved waveform inversion results, which is reconfirmed by a multidimensional 2D Marmousi experiment. Future waveform RNNs, with additional degrees of freedom, may allow optimal wave propagation rules to be solved for at the same time as medium properties, reducing modeling errors.


Author(s):  
Ehsan Jamali Hondori ◽  
Chen Guo ◽  
Hitoshi Mikada ◽  
Jin-Oh Park

AbstractFull-waveform inversion (FWI) of limited-offset marine seismic data is a challenging task due to the lack of refracted energy and diving waves from the shallow sediments, which are fundamentally required to update the long-wavelength background velocity model in a tomographic fashion. When these events are absent, a reliable initial velocity model is necessary to ensure that the observed and simulated waveforms kinematically fit within an error of less than half a wavelength to protect the FWI iterative local optimization scheme from cycle skipping. We use a migration-based velocity analysis (MVA) method, including a combination of the layer-stripping approach and iterations of Kirchhoff prestack depth migration (KPSDM), to build an accurate initial velocity model for the FWI application on 2D seismic data with a maximum offset of 5.8 km. The data are acquired in the Japan Trench subduction zone, and we focus on the area where the shallow sediments overlying a highly reflective basement on top of the Cretaceous erosional unconformity are severely faulted and deformed. Despite the limited offsets available in the seismic data, our carefully designed workflow for data preconditioning, initial model building, and waveform inversion provides a velocity model that could improve the depth images down to almost 3.5 km. We present several quality control measures to assess the reliability of the resulting FWI model, including ray path illuminations, sensitivity kernels, reverse time migration (RTM) images, and KPSDM common image gathers. A direct comparison between the FWI and MVA velocity profiles reveals a sharp boundary at the Cretaceous basement interface, a feature that could not be observed in the MVA velocity model. The normal faults caused by the basal erosion of the upper plate in the study area reach the seafloor with evident subsidence of the shallow strata, implying that the faults are active.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


Author(s):  
Michael Gineste ◽  
Jo Eidsvik

AbstractAn ensemble-based method for seismic inversion to estimate elastic attributes is considered, namely the iterative ensemble Kalman smoother. The main focus of this work is the challenge associated with ensemble-based inversion of seismic waveform data. The amount of seismic data is large and, depending on ensemble size, it cannot be processed in a single batch. Instead a solution strategy of partitioning the data recordings in time windows and processing these sequentially is suggested. This work demonstrates how this partitioning can be done adaptively, with a focus on reliable and efficient estimation. The adaptivity relies on an analysis of the update direction used in the iterative procedure, and an interpretation of contributions from prior and likelihood to this update. The idea is that these must balance; if the prior dominates, the estimation process is inefficient while the estimation is likely to overfit and diverge if data dominates. Two approaches to meet this balance are formulated and evaluated. One is based on an interpretation of eigenvalue distributions and how this enters and affects weighting of prior and likelihood contributions. The other is based on balancing the norm magnitude of prior and likelihood vector components in the update. Only the latter is found to sufficiently regularize the data window. Although no guarantees for avoiding ensemble divergence are provided in the paper, the results of the adaptive procedure indicate that robust estimation performance can be achieved for ensemble-based inversion of seismic waveform data.


Sign in / Sign up

Export Citation Format

Share Document