waveform synthesis
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 28)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 27 (6) ◽  
pp. 42-48
Author(s):  
Arturs Aboltins ◽  
Dmitrijs Pikulins ◽  
Juris Grizans ◽  
Sergejs Tjukovs

This paper addresses the development of an acoustic deterrent device for the protection of fishponds and other objects against the unwanted presence of birds. The objective of the paper is not only providing of a deep analysis of available technologies for waveform synthesis and generation, but also building a theoretical base for the design and implementation of acoustic bird deterrent solutions. The paper addresses the synthesis of bird songs and calls using technologies for music, speech, and other types of acoustic signal processing. The second part of the paper is devoted to the unique algorithms and implementation details of the intelligent acoustic deterrence device prototype. The practical applicability of algorithms for bird call record conversion into synthesizer sequences has been analysed and possible issues are highlighted. The effectiveness and ease of practical implementation of the given method in the hardware are briefly discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yudong Yang ◽  
Roland E. Mainz ◽  
Giulio Maria Rossi ◽  
Fabian Scheiba ◽  
Miguel A. Silva-Toledo ◽  
...  

AbstractAttosecond science promises to reveal the most fundamental electronic dynamics occurring in matter and it can develop further by meeting two linked technological goals related to high-order harmonic sources: improved spectral tunability (allowing selectivity in addressing electronic transitions) and higher photon flux (permitting to measure low cross-section processes). New developments come through parametric waveform synthesis, which provides control over the shape of field transients, enabling the creation of highly-tunable isolated attosecond pulses via high-harmonic generation. Here we demonstrate that the first goal is fulfilled since central energy, spectral bandwidth/shape and temporal duration of isolated attosecond pulses can be controlled by shaping the laser waveform via two key parameters: the relative-phase between two halves of the multi-octave spanning spectrum, and the overall carrier-envelope phase. These results not only promise to expand the experimental possibilities in attosecond science, but also demonstrate coherent strong-field control of free-electron trajectories using tailored optical waveforms.


2021 ◽  
Vol 11 (21) ◽  
pp. 9791
Author(s):  
Praveen Kumar Maroju ◽  
Cesare Grazioli ◽  
Michele Di Di Fraia ◽  
Matteo Moioli ◽  
Dominik Ertel ◽  
...  

Free-electron lasers (FELs) can produce radiation in the short wavelength range extending from the extreme ultraviolet (XUV) to the X-rays with a few to a few tens of femtoseconds pulse duration. These facilities have enabled significant breakthroughs in the field of atomic, molecular, and optical physics, implementing different schemes based on two-color photoionization mechanisms. In this article, we present the generation of attosecond pulse trains (APTs) at the seeded FEL FERMI using the beating of multiple phase-locked harmonics. We demonstrate the complex attosecond waveform shaping of the generated APTs, exploiting the ability to manipulate independently the amplitudes and the phases of the harmonics. The described generalized attosecond waveform synthesis technique with an arbitrary number of phase-locked harmonics will allow the generation of sub-100 as pulses with programmable electric fields.


2021 ◽  
Author(s):  
Mohammed Salah Al-Radhi ◽  
Tamás Gábor Csapó ◽  
Csaba Zainkó ◽  
Géza Németh

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bing Xue ◽  
Yuuki Tamaru ◽  
Yuxi Fu ◽  
Hua Yuan ◽  
Pengfei Lan ◽  
...  

Since the first isolated attosecond pulse was demonstrated through high-order harmonics generation (HHG) in 2001, researchers’ interest in the ultrashort time region has expanded. However, one realizes a limitation for related research such as attosecond spectroscopy. The bottleneck is concluded to be the lack of a high-peak-power isolated attosecond pulse source. Therefore, currently, generating an intense attosecond pulse would be one of the highest priority goals. In this paper, we review our recent work of a TW-class parallel three-channel waveform synthesizer for generating a gigawatt-scale soft-X-ray isolated attosecond pulse (IAP) using HHG. By employing several stabilization methods, we have achieved a stable 50 mJ three-channel optical-waveform synthesizer with a peak power at the multi-TW level. This optical-waveform synthesizer is capable of creating a stable intense optical field for generating an intense continuum harmonic beam thanks to the successful stabilization of all the parameters. Furthermore, the precision control of shot-to-shot reproducible synthesized waveforms is achieved. Through the HHG process employing a loose-focusing geometry, an intense shot-to-shot stable supercontinuum (50–70 eV) is generated in an argon gas cell. This continuum spectrum supports an IAP with a transform-limited duration of 170 as and a submicrojoule pulse energy, which allows the generation of a GW-scale IAP. Another supercontinuum in the soft-X-ray region with higher photon energy of approximately 100–130 eV is also generated in neon gas from the synthesizer. The transform-limited pulse duration is 106 as. Thus, the enhancement of HHG output through optimized waveform synthesis is experimentally proved.


Sign in / Sign up

Export Citation Format

Share Document