scholarly journals Tropical Instability Waves in the Atlantic Ocean: Investigating the Relative Role of Sea Surface Salinity and Temperature From 2010 to 2018

2020 ◽  
Vol 125 (12) ◽  
Author(s):  
L. Olivier ◽  
G. Reverdin ◽  
A. Hasson ◽  
J. Boutin
2007 ◽  
Vol 24 (2) ◽  
pp. 255-269 ◽  
Author(s):  
Sabine Philipps ◽  
Christine Boone ◽  
Estelle Obligis

Abstract Soil Moisture and Ocean Salinity (SMOS) was chosen as the European Space Agency’s second Earth Explorer Opportunity mission. One of the objectives is to retrieve sea surface salinity (SSS) from measured brightness temperatures (TBs) at L band with a precision of 0.2 practical salinity units (psu) with averages taken over 200 km by 200 km areas and 10 days [as suggested in the requirements of the Global Ocean Data Assimilation Experiment (GODAE)]. The retrieval is performed here by an inverse model and additional information of auxiliary SSS, sea surface temperature (SST), and wind speed (W). A sensitivity study is done to observe the influence of the TBs and auxiliary data on the SSS retrieval. The key role of TB and W accuracy on SSS retrieval is verified. Retrieval is then done over the Atlantic for two cases. In case A, auxiliary data are simulated from two model outputs by adding white noise. The more realistic case B uses independent databases for reference and auxiliary ocean parameters. For these cases, the RMS error of retrieved SSS on pixel scale is around 1 psu (1.2 for case B). Averaging over GODAE scales reduces the SSS error by a factor of 12 (4 for case B). The weaker error reduction in case B is most likely due to the correlation of errors in auxiliary data. This study shows that SSS retrieval will be very sensitive to errors on auxiliary data. Specific efforts should be devoted to improving the quality of auxiliary data.


2021 ◽  
Vol 13 (15) ◽  
pp. 2995
Author(s):  
Frederick M. Bingham ◽  
Severine Fournier ◽  
Susannah Brodnitz ◽  
Karly Ulfsax ◽  
Hong Zhang

Sea surface salinity (SSS) satellite measurements are validated using in situ observations usually made by surfacing Argo floats. Validation statistics are computed using matched values of SSS from satellites and floats. This study explores how the matchup process is done using a high-resolution numerical ocean model, the MITgcm. One year of model output is sampled as if the Aquarius and Soil Moisture Active Passive (SMAP) satellites flew over it and Argo floats popped up into it. Statistical measures of mismatch between satellite and float are computed, RMS difference (RMSD) and bias. The bias is small, less than 0.002 in absolute value, but negative with float values being greater than satellites. RMSD is computed using an “all salinity difference” method that averages level 2 satellite observations within a given time and space window for comparison with Argo floats. RMSD values range from 0.08 to 0.18 depending on the space–time window and the satellite. This range gives an estimate of the representation error inherent in comparing single point Argo floats to area-average satellite values. The study has implications for future SSS satellite missions and the need to specify how errors are computed to gauge the total accuracy of retrieved SSS values.


2021 ◽  
Vol 13 (3) ◽  
pp. 420
Author(s):  
Jingru Sun ◽  
Gabriel Vecchi ◽  
Brian Soden

Multi-year records of satellite remote sensing of sea surface salinity (SSS) provide an opportunity to investigate the climatological characteristics of the SSS response to tropical cyclones (TCs). In this study, the influence of TC winds, rainfall and preexisting ocean stratification on SSS evolution is examined with multiple satellite-based and in-situ data. Global storm-centered composites indicate that TCs act to initially freshen the ocean surface (due to precipitation), and subsequently salinify the surface, largely through vertical ocean processes (mixing and upwelling), although regional hydrography can lead to local departure from this behavior. On average, on the day a TC passes, a strong SSS decrease is observed. The fresh anomaly is subsequently replaced by a net surface salinification, which persists for weeks. This salinification is larger on the right (left)-hand side of the storm motion in the Northern (Southern) Hemisphere, consistent with the location of stronger turbulent mixing. The influence of TC intensity and translation speed on the ocean response is also examined. Despite having greater precipitation, stronger TCs tend to produce longer-lasting, stronger and deeper salinification especially on the right-hand side of the storm motion. Faster moving TCs are found to have slightly weaker freshening with larger area coverage during the passage, but comparable salinification after the passage. The ocean haline response in four basins with different climatological salinity stratification reveals a significant impact of vertical stratification on the salinity response during and after the passage of TCs.


2021 ◽  
Vol 13 (5) ◽  
pp. 831
Author(s):  
Jorge Vazquez-Cuervo ◽  
Chelle Gentemann ◽  
Wenqing Tang ◽  
Dustin Carroll ◽  
Hong Zhang ◽  
...  

The Arctic Ocean is one of the most important and challenging regions to observe—it experiences the largest changes from climate warming, and at the same time is one of the most difficult to sample because of sea ice and extreme cold temperatures. Two NASA-sponsored deployments of the Saildrone vehicle provided a unique opportunity for validating sea-surface salinity (SSS) derived from three separate products that use data from the Soil Moisture Active Passive (SMAP) satellite. To examine possible issues in resolving mesoscale-to-submesoscale variability, comparisons were also made with two versions of the Estimating the Circulation and Climate of the Ocean (ECCO) model (Carroll, D; Menmenlis, D; Zhang, H.). The results indicate that the three SMAP products resolve the runoff signal associated with the Yukon River, with high correlation between SMAP products and Saildrone SSS. Spectral slopes, overall, replicate the −2.0 slopes associated with mesoscale-submesoscale variability. Statistically significant spatial coherences exist for all products, with peaks close to 100 km. Based on these encouraging results, future research should focus on improving derivations of satellite-derived SSS in the Arctic Ocean and integrating model results to complement remote sensing observations.


Sign in / Sign up

Export Citation Format

Share Document