scholarly journals The 2021 M w 7.4 Madoi earthquake: an archetype bilateral slip‐pulse rupture arrested at a splay fault

Author(s):  
Kejie Chen ◽  
Jean‐Philippe Avouac ◽  
Jianghui Geng ◽  
Cunren Liang ◽  
Zhenguo Zhang ◽  
...  
Keyword(s):  
2009 ◽  
Vol 2 (9) ◽  
pp. 648-652 ◽  
Author(s):  
Michael Strasser ◽  
Gregory F. Moore ◽  
Gaku Kimura ◽  
Yujin Kitamura ◽  
Achim J. Kopf ◽  
...  

2013 ◽  
Vol 362 ◽  
pp. 99-107 ◽  
Author(s):  
Shu-Kun Hsu ◽  
Yi-Ching Yeh ◽  
Jean-Claude Sibuet ◽  
Wen-Bin Doo ◽  
Ching-Hui Tsai

1998 ◽  
Vol 88 (4) ◽  
pp. 1085-1094
Author(s):  
Y. Ben-Zion ◽  
D. J. Andrews

Abstract We perform two-dimensional plane-strain finite-difference calculations of dynamic rupture along an interface separating different elastic media. The calculations extend earlier results of Andrews and Ben-Zion (1997) who found a self-sustaining narrow slip pulse associated with dynamic reduction of normal stress along a material interface governed by constant friction, in agreement with Weertman (1980). The pulse propagates in a wrinklelike mode having remarkable dynamic properties that may be relevant to many geophysical phenomena. Here we examine the range of values of elastic parameters, friction coefficient, and strength heterogeneities allowing for the existence of the wrinklelike pulse. Rupture is initiated in the simulations by imposed slip in a limited space-time domain. Outside the region of the imposed slip, the pulse becomes narrower and higher with propagation distance along the interface. The strength of the wrinklelike pulse increases with S-wave velocity contrast up to a maximum at about 35% contrast. Beyond such a velocity contrast, there is no solution for a generalized Rayleigh wave along a material interface, and the strength of the pulse decreases. However, the wrinklelike pulse can still propagate in a self-sustaining manner for larger velocity contrasts. For a fixed S-wave velocity contrast, the strength has little dependence on density contrast or Poisson's ratio, but the pulse strength increases rapidly with increasing coefficient of friction. Stress and strength heterogeneities with small correlation length have little effect on the pulse, while long wavelength heterogeneities reduce the strength of the pulse. The high mechanical efficiency of the wrinklelike pulse suggests that earthquake ruptures may favor such mode of failure when possible.


2020 ◽  
Vol 138 ◽  
pp. 106335 ◽  
Author(s):  
Xiaojun Feng ◽  
Qiming Zhang ◽  
Enyuan Wang ◽  
Muhammad Ali ◽  
Zhe Dong ◽  
...  

2017 ◽  
Vol 44 (8) ◽  
pp. 3517-3525 ◽  
Author(s):  
James Hollingsworth ◽  
Lingling Ye ◽  
Jean-Philippe Avouac
Keyword(s):  

2020 ◽  
Author(s):  
Iris van Zelst ◽  
Leonhard Rannabauer ◽  
Alice-Agnes Gabriel ◽  
Ylona van Dinther

<p>Earthquake rupture on splay faults in subduction zones could pose a significant tsunami hazard, as they could accommodate more vertical displacement and are situated closer to the coast. To better understand this tsunami hazard, we model splay fault rupture dynamics and tsunami propagation and inundation constrained by a geodynamic seismic cycle (SC) model; building on work presented in Van Zelst et al. (2019). This two-dimensional modelling framework considers geodynamics, seismic cycles, dynamic ruptures, and tsunamis together for the first time. The SC model provides six blind splay fault geometries, self-consistent stress and strength conditions, and heterogeneous material properties in the domain. We find that all six splay faults are activated when the megathrust ruptures. The largest splay fault closest to the nucleation region ruptures immediately when the main rupture front passes the branching point. The other splay faults are activated through dynamic stress transfer from the main megathrust rupture or reflected waves from the surface. Splay fault rupture results in distinct peaks in the vertical surface displacements with a smaller wavelength and larger amplitudes. The effect of the vertical surface displacements also translates into the resulting tsunami, which consists of one large wave for the megathrust-only model and seven waves for the model including splay faults. Here, six of the waves can be attributed to the splay faults and the seventh wave results from the shallow tip of the megathrust. The waves from the rupture including splay faults have larger amplitudes and result in two episodes of coastal flooding. The first episode is due to the large wave caused by rupture on the largest splay fault nearest to the coast. The second flooding episode results from the combination and interference of the waves caused by the rest of the splay faults and the shallow megathrust tip. In contrast, the tsunami caused by rupture on only the megathrust has only one episode of flooding. Our results suggest that larger-than-expected tsunamis could be attributed to rupture on large splay faults. When multiple smaller splay faults rupture their effect on the tsunami might be hard to distinguish from a pure megathrust rupture. Considering the significant effects splay fault rupture can have on a tsunami, it is important to understand splay fault activation and to consider them in hazard assessment.</p><p>References:</p><p>Van Zelst, I., Wollherr, S., Madden, E. H. , Gabriel, A.-A., and Van Dinther, Y. (2019). Modeling megathrust earthquakes across scales: one-way coupling from geodynamics and seismic cycles to dynamic rupture. Journal of Geophysical Research: Solid Earth, 124, https://doi.org/10.1029/2019JB017539</p><p></p>


Sign in / Sign up

Export Citation Format

Share Document