A mega-splay fault system and tsunami hazard in the southern Ryukyu subduction zone

2013 ◽  
Vol 362 ◽  
pp. 99-107 ◽  
Author(s):  
Shu-Kun Hsu ◽  
Yi-Ching Yeh ◽  
Jean-Claude Sibuet ◽  
Wen-Bin Doo ◽  
Ching-Hui Tsai
2014 ◽  
Vol 66 (1) ◽  
pp. 120 ◽  
Author(s):  
Takeshi Tsuji ◽  
Juichiro Ashi ◽  
Yasutaka Ikeda

2020 ◽  
Author(s):  
Iris van Zelst ◽  
Leonhard Rannabauer ◽  
Alice-Agnes Gabriel ◽  
Ylona van Dinther

<p>Earthquake rupture on splay faults in subduction zones could pose a significant tsunami hazard, as they could accommodate more vertical displacement and are situated closer to the coast. To better understand this tsunami hazard, we model splay fault rupture dynamics and tsunami propagation and inundation constrained by a geodynamic seismic cycle (SC) model; building on work presented in Van Zelst et al. (2019). This two-dimensional modelling framework considers geodynamics, seismic cycles, dynamic ruptures, and tsunamis together for the first time. The SC model provides six blind splay fault geometries, self-consistent stress and strength conditions, and heterogeneous material properties in the domain. We find that all six splay faults are activated when the megathrust ruptures. The largest splay fault closest to the nucleation region ruptures immediately when the main rupture front passes the branching point. The other splay faults are activated through dynamic stress transfer from the main megathrust rupture or reflected waves from the surface. Splay fault rupture results in distinct peaks in the vertical surface displacements with a smaller wavelength and larger amplitudes. The effect of the vertical surface displacements also translates into the resulting tsunami, which consists of one large wave for the megathrust-only model and seven waves for the model including splay faults. Here, six of the waves can be attributed to the splay faults and the seventh wave results from the shallow tip of the megathrust. The waves from the rupture including splay faults have larger amplitudes and result in two episodes of coastal flooding. The first episode is due to the large wave caused by rupture on the largest splay fault nearest to the coast. The second flooding episode results from the combination and interference of the waves caused by the rest of the splay faults and the shallow megathrust tip. In contrast, the tsunami caused by rupture on only the megathrust has only one episode of flooding. Our results suggest that larger-than-expected tsunamis could be attributed to rupture on large splay faults. When multiple smaller splay faults rupture their effect on the tsunami might be hard to distinguish from a pure megathrust rupture. Considering the significant effects splay fault rupture can have on a tsunami, it is important to understand splay fault activation and to consider them in hazard assessment.</p><p>References:</p><p>Van Zelst, I., Wollherr, S., Madden, E. H. , Gabriel, A.-A., and Van Dinther, Y. (2019). Modeling megathrust earthquakes across scales: one-way coupling from geodynamics and seismic cycles to dynamic rupture. Journal of Geophysical Research: Solid Earth, 124, https://doi.org/10.1029/2019JB017539</p><p></p>


2017 ◽  
Vol 93 (S1) ◽  
pp. 127-152 ◽  
Author(s):  
Panon Latcharote ◽  
Khaled Al-Salem ◽  
Anawat Suppasri ◽  
Tanuspong Pokavanich ◽  
Shinji Toda ◽  
...  

2021 ◽  
Vol 1 (2) ◽  
pp. 75-84
Author(s):  
Charlotte Pizer ◽  
Kate Clark ◽  
Jamie Howarth ◽  
Ed Garrett ◽  
Xiaoming Wang ◽  
...  

Abstract Geological records of subduction earthquakes, essential for seismic and tsunami hazard assessment, are difficult to obtain at transitional plate boundaries, because upper-plate fault earthquake deformation can mask the subduction zone signal. Here, we examine unusual shell layers within a paleolagoon at Lake Grassmere, at the transition zone between the Hikurangi subduction zone and the Marlborough fault system. Based on biostratigraphic and sedimentological analyses, we interpret the shell layers as tsunami deposits. These are dated at 2145–1837 and 1505–1283 yr B.P., and the most likely source of these tsunamis was ruptures of the southern Hikurangi subduction interface. Identification of these two large earthquakes brings the total record of southern Hikurangi subduction earthquakes to four in the past 2000 yr. For the first time, it is possible to obtain a geologically constrained recurrence interval for the southern Hikurangi subduction zone. We calculate a recurrence interval of 500 yr (335–655 yr, 95% confidence interval) and a coefficient of variation of 0.27 (0.0–0.47, 95% confidence interval). The probability of a large subduction earthquake on the southern Hikurangi subduction zone is 26% within the next 50 yr. We find no consistent temporal relationship between subduction earthquakes and large earthquakes on upper-plate faults.


Sign in / Sign up

Export Citation Format

Share Document