Unusual cross‐shelf transport driven by the changes of wind pattern in a marginal sea

Author(s):  
Zhigang Yao ◽  
Ke Chen ◽  
Yang Ding ◽  
Xiaopei Lin ◽  
Xianwen Bao ◽  
...  
Keyword(s):  
2002 ◽  
Author(s):  
Michael A. Spall
Keyword(s):  

2021 ◽  
Vol 95 (1) ◽  
pp. 121-130
Author(s):  
Honggang ZHAO ◽  
Ying LI ◽  
Xiangchun CHANG ◽  
Zengxue LI ◽  
Haiyan LIU ◽  
...  

2010 ◽  
Vol 7 (12) ◽  
pp. 3941-3959 ◽  
Author(s):  
I. Marinov ◽  
S. C. Doney ◽  
I. D. Lima

Abstract. The response of ocean phytoplankton community structure to climate change depends, among other factors, upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100) from a global Earth System model. Our proposed "critical nutrient hypothesis" stipulates the existence of a critical nutrient threshold below (above) which a nutrient change will affect small phytoplankton biomass more (less) than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to decrease more strongly the specific growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatoms than small phytoplankton, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. In the context of our model, climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Climate driven changes in nutrients, temperature and light have regionally varying and sometimes counterbalancing impacts on phytoplankton biomass and structure, with nutrients and temperature dominant in the 45° S–45° N band and light-temperature effects dominant in the marginal sea-ice and subpolar regions. As predicted, decreases in nutrients inside the 45° S–45° N "critical nutrient" band result in diatom biomass decreasing more than small phytoplankton biomass. Further stratification from global warming could result in geographical shifts in the "critical nutrient" threshold and additional changes in ecology.


2021 ◽  
Vol 130 ◽  
pp. 108094
Author(s):  
Haoran Liu ◽  
Yuyuan Xie ◽  
Yong Qiu ◽  
Lei Wang ◽  
Feipeng Wang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 217 ◽  
pp. 104374
Author(s):  
Hoi-Soo Jung ◽  
Jihun Kim ◽  
Dhongil Lim ◽  
Dohyun Jeong ◽  
Junho Lee ◽  
...  

2021 ◽  
Author(s):  
Cristian Suteanu

<p>Characterizing properties of wind speed variability and their dependence on the temporal scale is important: from sub-second intervals (for the design and monitoring of wind turbines) to longer time scales – months, years (for the evaluation of the wind power potential). Wind speed data are usually reported as averages over time intervals of various length (minutes, days, months, etc). The research project presented in this paper addressed the following questions: What aspects of the wind pattern are changed, in what ways and to what extent, in the process of producing time-averaged values? What precautions should be considered when time-averaged values are used in the assessment of wind variability? What are the conditions to be fulfilled for a meaningful comparison of wind pattern characteristics obtained in distinct studies? Our research started from wind speed records sampled at 0.14 second intervals, which were averaged over increasingly longer time intervals. Variability evaluation was based on statistical moments, L-moments, and detrended fluctuation analysis. We present the change suffered by characteristics of temporal variability as a function of sampling rate and the averaging time interval. In particular, the height dependence of wind speed variability, which is of theoretical and practical importance, is shown to be progressively erased when averaging intervals are increased. The paper makes recommendations regarding the interpretation of wind pattern characteristics obtained at different sites as a function of sampling rate and time-averaging intervals.</p>


2006 ◽  
Vol 44 ◽  
pp. 30-36 ◽  
Author(s):  
Stefan Kern ◽  
Youmin Chen ◽  
Detlef Stammer ◽  
Gunnar Spreen

AbstractAnnual and winter (December–April) sea-ice area and extent are calculated for the Greenland Sea (GS) and Barents Sea (BS) from daily ice concentrations obtained from space-borne microwave radiometry for 1979–2003. The ice extent decreases significantly, particularly during winter, by 65 000 km2 (decade)–1 in the GS and by 72 000 km2 (decade)–1 in the BS. Ice-extent fractions (of these total extents) occupied by ice of five different ice-concentration ranges are calculated and analyzed. Changes in these fractions are again significant and most pronounced during winter. In the GS, the fraction of close to very compact ice (65–95%) decreases by 17 000 km2 (decade)–1 and the fraction of very compact ice (>95%) increases by 29 000 km2 (decade)–1, corresponding to a loss of 19% and a gain of 58% relative to the 25 year mean, respectively. In the BS, the fraction of close to compact ice (65–85%) increases by 26 000km2 (decade)–1 and the fraction with compact to very compact ice (>85%) decreases by 66 000 km2 (decade)–1, corresponding to a gain of 30% and a loss of 67% relative to the 25 year mean, respectively. The changing surface wind pattern analyzed from ERA-40 data favours this increasing (decreasing) ice compactness in the GS (BS).


Sign in / Sign up

Export Citation Format

Share Document