scholarly journals Impact of Wettability and Gravity on Fluid Displacement and Trapping in Representative 2D Micromodels of Porous Media (2D Sand Analogs)

2021 ◽  
Vol 57 (10) ◽  
Author(s):  
Saeed Golmohammadi ◽  
Yi Ding ◽  
Matthias Kuechler ◽  
Danny Reuter ◽  
Steffen Schlueter ◽  
...  
2018 ◽  
Vol 3 (10) ◽  
Author(s):  
Bauyrzhan K. Primkulov ◽  
Stephen Talman ◽  
Keivan Khaleghi ◽  
Alireza Rangriz Shokri ◽  
Rick Chalaturnyk ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 664 ◽  
Author(s):  
Jorge Avendaño ◽  
Nicolle Lima ◽  
Antonio Quevedo ◽  
Marcio Carvalho

Wettability has a dramatic impact on fluid displacement in porous media. The pore level physics of one liquid being displaced by another is a strong function of the wetting characteristics of the channel walls. However, the quantification of the effect is still not clear. Conflicting data have shown that in some oil displacement experiments in rocks, the volume of trapped oil falls as the porous media becomes less water-wet, while in some microfluidic experiments the volume of residual oil is higher in oil-wet media. The reasons for this discrepancy are not fully understood. In this study, we analyzed oil displacement by water injection in two microfluidic porous media with different wettability characteristics that had capillaries with constrictions. The resulting oil ganglia size distribution at the end of water injection was quantified by image processing. The results show that in the oil-wet porous media, the displacement front was more uniform and the final volume of remaining oil was smaller, with a much smaller number of large oil ganglia and a larger number of small oil ganglia, when compared to the water-wet media.


2019 ◽  
Vol 51 (1) ◽  
pp. 429-449 ◽  
Author(s):  
Kamaljit Singh ◽  
Michael Jung ◽  
Martin Brinkmann ◽  
Ralf Seemann

Liquid invasion into a porous medium is a phenomenon of great importance in both nature and technology. Despite its enormous importance, there is a surprisingly sparse understanding of the processes occurring on the scale of individual pores and of how these processes determine the global invasion pattern. In particular, the exact influence of the wettability remains unclear besides the limiting cases of very small or very large contact angles of the invading fluid. Most quantitative pore-scale experiments and theoretical considerations have been conducted in effectively two-dimensional (2D) micromodels and Hele–Shaw geometries. Although these pioneering works helped to unravel some of the physical aspects of the displacement processes, the relevance of 2D models has not always been appreciated for natural porous media. With the availability of X-ray microtomography, 3D imaging has become a standard for exploring pore-scale processes in porous media. Applying advanced postprocessing routines and synchrotron microtomography, researchers can image even slow flow processes in real time and extract relevant material parameters like the contact angle from the interfaces in the pore space. These advances are expected to boost both theoretical and experimental understanding of pore-scale processes in natural porous media.


Sign in / Sign up

Export Citation Format

Share Document