Stratospheric aerosol optical depth observed by the Stratospheric Aerosol and Gas Experiment II: Decay of the El Chichon and Ruiz volcanic perturbations

1991 ◽  
Vol 96 (D3) ◽  
pp. 5209 ◽  
Author(s):  
G. K. Yue ◽  
M. P. McCormick ◽  
E. W. Chiou
2016 ◽  
Author(s):  
Cristen Adams ◽  
Adam E. Bourassa ◽  
Chris A. McLinden ◽  
Chris E. Sioris ◽  
Thomas von Clarmann ◽  
...  

Abstract. Following the large volcanic eruptions of Pinatubo in 1991 and El Chichón in 1982, decreases in stratospheric NO2 associated with enhanced aerosol were observed. The Optical Spectrograph and InfraRed Imaging Spectrometer (OSIRIS) likewise measured widespread enhancements of stratospheric aerosol following seven volcanic eruptions between 2002 and 2014, although the magnitudes of these eruptions were all much smaller than the Pinatubo and El Chichón eruptions. In order to isolate and quantify the relationship between volcanic aerosol and NO2, NO2 anomalies were calculated using measurements from OSIRIS and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). In the tropics, variability due to the quasi-biennial oscillation was subtracted from the timeseries. OSIRIS profile measurements indicate that the strongest relationships between NO2 and volcanic aerosol extinction were for the layer ~ 3–7 km above the tropopause, where OSIRIS stratospheric NO2 partial columns for ~ 3–7 km above the tropopause were found to be smaller than baseline levels during these aerosol enhancements by up to ~ 60 % with typical Pearson correlation coefficients of R ~ −0.7. MIPAS also observed decreases in NO2 partial columns during periods of affected by volcanic aerosol, with percent differences of up to ~ 25 %. An even stronger relationship was observed between OSIRIS aerosol optical depth and MIPAS N2O5 partial columns, with R ~ −0.9, although no link with MIPAS HNO3 was observed. The variation of OSIRIS NO2 with increasing aerosol was found to be quantitatively consistent with simulations from a photochemical box model in terms of both magnitude and degree of non-linearity.


1984 ◽  
Vol 23 (3) ◽  
pp. 309-320
Author(s):  
D. J. HOFMANN ◽  
J. M. ROSEN

Durante un descenso lento de bal6n desde los 30 km de altitud sobre el sureste de Texas en octubre de 1982, el tubo de entrada a un contador de partículas capaz de medir las concentraciones de aerosol de r ≥ 0.15 µm y r ≥ 0.25 µm fue calentado a 150°C, permitiendo su enfriamiento periódico para determinar la volatilidad del aerosol. Al hacerse la medición, el aerosol inyectado por El Chichón se caracterizaba por dos capas principales centradas a alrededor de 17 y 24 km. La capa superior contenía partículas más grandes (radio modal principal de ~0.3 µm, comparado con ~0.1 µm en la capa inferior). Al calentarlo, el aerosol indicaba una concentración de ~1% de los valores ambientales, sugiriendo que la mayoría de las partículas eran muy volátiles o tenían cubierta muy volátil con núcleos posiblemente no volátiles, de radios < 0.15µm. La distribución vertical del componente restante no volátil podía ser resuelta. Observando la temperatura a la cual podía suprimirse la mayor parte del aerosol (punto de vaporización) a varias altitudes (presiones), se construyó una curva de presión de vapor. Los resultados indican que el material volátil en la capa superior consistía en ~80% H2S04 - 20% H2O (por peso) mientras que la capa inferior consistía en un 60 - 65% de aerosol ácido. Esta diferencia es debida principalmente a las temperaturas más altas en la capa superior. Los porcentajes de ácido sulfúrico medidos en peso concuerdan bien con los valores te6ricos según fueron calculados para las temperaturas observadas y las concentraciones típicas del vapor de agua.


1989 ◽  
Vol 94 (D7) ◽  
pp. 9909 ◽  
Author(s):  
Gian Paolo Gobbi ◽  
Alberto Adriani ◽  
Fernando Congeduti

2011 ◽  
Vol 8 (8) ◽  
pp. 2317-2339 ◽  
Author(s):  
T. L. Frölicher ◽  
F. Joos ◽  
C. C. Raible

Abstract. Impacts of low-latitude, explosive volcanic eruptions on climate and the carbon cycle are quantified by forcing a comprehensive, fully coupled carbon cycle-climate model with pulse-like stratospheric aerosol optical depth changes. The model represents the radiative and dynamical response of the climate system to volcanic eruptions and simulates a decrease of global and regional atmospheric surface temperature, regionally distinct changes in precipitation, a positive phase of the North Atlantic Oscillation, and a decrease in atmospheric CO2 after volcanic eruptions. The volcanic-induced cooling reduces overturning rates in tropical soils, which dominates over reduced litter input due to soil moisture decrease, resulting in higher land carbon inventories for several decades. The perturbation in the ocean carbon inventory changes sign from an initial weak carbon sink to a carbon source. Positive carbon and negative temperature anomalies in subsurface waters last up to several decades. The multi-decadal decrease in atmospheric CO2 yields a small additional radiative forcing that amplifies the cooling and perturbs the Earth System on longer time scales than the atmospheric residence time of volcanic aerosols. In addition, century-scale global warming simulations with and without volcanic eruptions over the historical period show that the ocean integrates volcanic radiative cooling and responds for different physical and biogeochemical parameters such as steric sea level or dissolved oxygen. Results from a suite of sensitivity simulations with different magnitudes of stratospheric aerosol optical depth changes and from global warming simulations show that the carbon cycle-climate sensitivity γ, expressed as change in atmospheric CO2 per unit change in global mean surface temperature, depends on the magnitude and temporal evolution of the perturbation, and time scale of interest. On decadal time scales, modeled γ is several times larger for a Pinatubo-like eruption than for the industrial period and for a high emission, 21st century scenario.


1983 ◽  
Vol 10 (11) ◽  
pp. 1017-1020 ◽  
Author(s):  
A. D. Clarke ◽  
R. J. Charlson ◽  
J. A. Ogren

2005 ◽  
Vol 5 (5) ◽  
pp. 1311-1339 ◽  
Author(s):  
P. Russell ◽  
J. Livingston ◽  
B. Schmid ◽  
J. Eilers ◽  
R. Kolyer ◽  
...  

Abstract. The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) measured solar- beam transmission on the NASA DC-8 during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II). This paper presents AATS-14 results for multiwavelength aerosol optical depth (AOD), including comparisons to results from two satellite sensors and another DC-8 instrument, namely the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Polar Ozone and Aerosol Measurement III (POAM III) and the Direct-beam Irradiance Airborne Spectrometer (DIAS). AATS-14 provides aerosol results at 13 wavelengths λ spanning the range of SAGE III and POAM III aerosol wavelengths. Because most AATS measurements were made at solar zenith angles (SZA) near 90°, retrieved AODs are strongly affected by uncertainties in the relative optical airmass of the aerosols and other constituents along the line of sight (LOS) between instrument and sun. To reduce dependence of the AATS-satellite comparisons on airmass, we perform the comparisons in LOS transmission and LOS optical thickness (OT) as well as in vertical OT (i.e., optical depth, OD). We also use a new airmass algorithm that validates the algorithm we previously used to within 2% for SZA<90°, and in addition provides results for SZA≥90°. For 6 DC-8 flights, 19 January-2 February 2003, AATS and DIAS results for LOS aerosol OT at λ=400nm agree to ≤12% of the AATS value. Mean and root-mean-square (RMS) differences, (DIAS-AATS)/AATS, are -2.3% and 7.7%, respectively. For DC-8 altitudes, AATS-satellite comparisons are possible only for λ>440nm, because of signal depletion for shorter λ on the satellite full-limb LOS. For the 4 AATS-SAGE and 4 AATS-POAM near-coincidences conducted 19-31 January 2003, AATS-satellite AOD differences were ≤0.0041 for all λ>440nm. RMS differences were ≤0.0022 for SAGE-AATS and ≤0.0026 for POAM-AATS. RMS relative differences in AOD ([SAGE-AATS]/AATS) were ≤33% for λ<~755nm, but grew to 59% for 1020nm and 66% at 1545nm. For λ>~755nm, AATS-POAM differences were less than AATS-SAGE differences, and RMS relative differences in AOD ([AATS-POAM]/AATS) were ≤31% for all λ between 440 and 1020nm. Unexplained differences that remain are associated with transmission differences, rather than differences in gas subtraction or conversion from LOS to vertical quantities. The very small stratospheric AOD values that occurred during SOLVE II added to the challenge of the comparisons, but do not explain all the differences.


Sign in / Sign up

Export Citation Format

Share Document