scholarly journals Sensitivity of atmospheric CO<sub>2</sub> and climate to explosive volcanic eruptions

2011 ◽  
Vol 8 (8) ◽  
pp. 2317-2339 ◽  
Author(s):  
T. L. Frölicher ◽  
F. Joos ◽  
C. C. Raible

Abstract. Impacts of low-latitude, explosive volcanic eruptions on climate and the carbon cycle are quantified by forcing a comprehensive, fully coupled carbon cycle-climate model with pulse-like stratospheric aerosol optical depth changes. The model represents the radiative and dynamical response of the climate system to volcanic eruptions and simulates a decrease of global and regional atmospheric surface temperature, regionally distinct changes in precipitation, a positive phase of the North Atlantic Oscillation, and a decrease in atmospheric CO2 after volcanic eruptions. The volcanic-induced cooling reduces overturning rates in tropical soils, which dominates over reduced litter input due to soil moisture decrease, resulting in higher land carbon inventories for several decades. The perturbation in the ocean carbon inventory changes sign from an initial weak carbon sink to a carbon source. Positive carbon and negative temperature anomalies in subsurface waters last up to several decades. The multi-decadal decrease in atmospheric CO2 yields a small additional radiative forcing that amplifies the cooling and perturbs the Earth System on longer time scales than the atmospheric residence time of volcanic aerosols. In addition, century-scale global warming simulations with and without volcanic eruptions over the historical period show that the ocean integrates volcanic radiative cooling and responds for different physical and biogeochemical parameters such as steric sea level or dissolved oxygen. Results from a suite of sensitivity simulations with different magnitudes of stratospheric aerosol optical depth changes and from global warming simulations show that the carbon cycle-climate sensitivity γ, expressed as change in atmospheric CO2 per unit change in global mean surface temperature, depends on the magnitude and temporal evolution of the perturbation, and time scale of interest. On decadal time scales, modeled γ is several times larger for a Pinatubo-like eruption than for the industrial period and for a high emission, 21st century scenario.

2011 ◽  
Vol 8 (2) ◽  
pp. 2957-3007 ◽  
Author(s):  
T. L. Frölicher ◽  
F. Joos ◽  
C. C. Raible

Abstract. Impacts of low-latitude, explosive volcanic eruptions on climate and the carbon cycle are quantified by forcing a comprehensive, fully coupled carbon cycle-climate model with pulse-like stratospheric sulfur release. The model represents the radiative and dynamical response of the climate system to volcanic eruptions and simulates a decrease of global and regional atmospheric surface temperature, regionally distinct changes in precipitation, a positive phase of the North Atlantic Oscillation, and a decrease in atmospheric CO2 after volcanic eruptions. The volcanic-induced cooling reduces overturning rates in tropical soils, which dominates over reduced litter input due to soil moisture decrease, resulting in higher land carbon inventories for several decades. The perturbation in the ocean carbon inventory changes sign from an initially weak carbon sink to a carbon source. Positive carbon and negative temperature anomalies in subsurface waters last up to several decades. The multi-decadal decrease in atmospheric CO2 yields an additional radiative forcing that amplifies the cooling and perturbs the Earth System on much longer time scales than the atmospheric residence time of volcanic aerosols. In addition, century-scale global warming simulations with and without volcanic eruptions over the historical period show that the ocean integrates volcanic radiative cooling and responds for different physical and biogeochemical parameters such as steric sea level or dissolved oxygen. Results from a suite of sensitivity simulations with different amounts of sulfur released and from global warming simulations show that the carbon cycle-climate sensitivity γ, expressed as change in atmospheric CO2 per unit change in global mean surface temperature, depends on the perturbation. On decadal time scales, modeled γ is several times larger for a Pinatubo-like eruption than for the industrial period and for a high emission, 21st century scenario.


2022 ◽  
Author(s):  
Michael Sigl ◽  
Matthew Toohey ◽  
Joseph R. McConnell ◽  
Jihong Cole-Dai ◽  
Mirko Severi

Abstract. The injection of sulfur into the stratosphere by volcanic eruptions is the dominant driver of natural climate variability on interannual-to-multidecadal timescales. Based on a set of continuous sulfate and sulfur records from a suite of ice cores from Greenland and Antarctica, the HolVol v.1.0 database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events for the Holocene (from 9500 BCE or 11500 year BP to 1900 CE), constituting an extension of the previous record by 7000 years. The database incorporates new-generation ice-core aerosol records with sub-annual temporal resolution and demonstrated sub-decadal dating accuracy and precision. By tightly aligning and stacking the ice-core records on the WD2014 chronology from Antarctica we resolve long-standing previous inconsistencies in the dating of ancient volcanic eruptions that arise from biased (i.e. dated too old) ice-core chronologies over the Holocene for Greenland. We reconstruct a total of 850 volcanic eruptions with injections in excess of 1 TgS, of which 329 (39 %) are located in the low latitudes with bipolar sulfate deposition, 426 (50 %) are located in the Northern Hemisphere (NH) extratropics and 88 (10 %) are located in the Southern Hemisphere (SH) extratropics. The spatial distribution of reconstructed eruption locations is in agreement with prior reconstructions for the past 2,500 years, and follows the global distribution of landmasses. In total, these eruptions injected 7410 TgS in the stratosphere, for which tropical eruptions accounted for 70 % and NH extratropics for 25 %. A long-term latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the HolVol VSSI estimates, representing the first Holocene-scale reconstruction constrained by Greenland and Antarctica ice cores. These new long-term reconstructions of past VSSI and SAOD variability confirm evidence from regional volcanic eruption chronologies (e.g., from Iceland) in showing that the early Holocene (9500–7000 BCE) experienced a higher number of volcanic eruptions (+16 %) and cumulative VSSI (+86 %) compared to the past 2,500 years. This increase coincides with the rapid retreat of ice sheets during deglaciation, providing context for potential future increases of volcanic activity in regions under projected glacier melting in the 21st century. The reconstructed VSSI and SAOD data are available at https://doi.pangaea.de/10.1594/PANGAEA.928646 (Sigl et al., 2021).


2021 ◽  
Author(s):  
Guilherme Torres Mendonça ◽  
Julia Pongratz ◽  
Christian Reick

&lt;p&gt;The increase in atmospheric CO2 driven by anthropogenic emissions is the main radiative forcing causing climate change. But this increase is not only a result from emissions, but also from changes in the global carbon cycle. These changes arise from feedbacks between climate and the carbon cycle that drive CO2 into or out of the atmosphere in addition to the emissions, thereby either accelerating or buffering climate change. Therefore, understanding the contribution of these feedbacks to the global response of the carbon cycle is crucial in advancing climate research. Currently, this contribution is quantified by the &amp;#945;-&amp;#946;-&amp;#947; framework (Friedlingstein et al., 2003). But this quantification is only valid for a particular perturbation scenario and time period. In contrast, a recently proposed generalization (Rubino et al., 2016) of this framework for weak perturbations quantifies this contribution for all scenarios and at different time scales.&amp;#160;&lt;/p&gt;&lt;p&gt;Thereby, this generalization provides a systematic framework to investigate the response of the global carbon cycle in terms of the climate-carbon cycle feedbacks. In the present work we employ this framework to study these feedbacks and the airborne fraction in different CMIP5 models. We demonstrate (1) that this generalization of the &amp;#945;-&amp;#946;-&amp;#947; framework consistently describes the linear dynamics of the carbon cycle in the MPI-ESM; and (2) how by this framework the climate-carbon cycle feedbacks and airborne fraction are quantified at different time scales in CMIP5 models. Our analysis shows that, independently of the perturbation scenario, (1) the net climate-carbon cycle feedback is negative at all time scales; (2) the airborne fraction generally decreases for increasing time scales; and (3) the land biogeochemical feedback dominates the model spread in the airborne fraction at all time scales. This last result therefore emphasizes the need to improve our understanding of this particular feedback.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;References:&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;P. Friedlingstein, J.-L. Dufresne, P. Cox, and P. Rayner. How positive is the feedback between climate change and the carbon cycle? Tellus B, 55(2):692&amp;#8211;700, 2003.&lt;/p&gt;&lt;p&gt;M. Rubino, D. Etheridge, C. Trudinger, C. Allison, P. Rayner, I. Enting, R. Mulvaney, L. Steele, R. Langenfelds, W. Sturges, et al. Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake. Nature Geoscience, 9(9):691&amp;#8211;694, 2016.&lt;/p&gt;


2018 ◽  
Vol 18 (17) ◽  
pp. 12845-12857 ◽  
Author(s):  
Christoph Brühl ◽  
Jennifer Schallock ◽  
Klaus Klingmüller ◽  
Charles Robert ◽  
Christine Bingen ◽  
...  

Abstract. This paper presents decadal simulations of stratospheric and tropospheric aerosol and its radiative effects by the chemistry general circulation model EMAC constrained with satellite observations in the framework of the ESA Aerosol CCI project such as GOMOS (Global Ozone Monitoring by Occultation of Stars) and (A)ATSR ((Advanced) Along Track Scanning Radiometer) on the ENVISAT (European Environmental Satellite), IASI (Infrared Atmospheric Sounding Interferometer) on MetOp (Meteorological Operational Satellite), and, additionally, OSIRIS (Optical Spectrograph and InfraRed Imaging System). In contrast to most other studies, the extinctions and optical depths from the model are compared to the observations at the original wavelengths of the satellite instruments covering the range from the UV (ultraviolet) to terrestrial IR (infrared). This avoids conversion artifacts and provides additional constraints for model aerosol and interpretation of the observations. MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) SO2 limb measurements are used to identify plumes of more than 200 volcanic eruptions. These three-dimensional SO2 plumes are added to the model SO2 at the eruption times. The interannual variability in aerosol extinction in the lower stratosphere, and of stratospheric aerosol radiative forcing at the tropopause, is dominated by the volcanoes. To explain the seasonal cycle of the GOMOS and OSIRIS observations, desert dust simulated by a new approach and transported to the lowermost stratosphere by the Asian summer monsoon and tropical convection turns out to be essential. This also applies to the radiative heating by aerosol in the lowermost stratosphere. The existence of wet dust aerosol in the lowermost stratosphere is indicated by the patterns of the wavelength dependence of extinction in observations and simulations. Additional comparison with (A)ATSR total aerosol optical depth at different wavelengths and IASI dust optical depth demonstrates that the model is able to represent stratospheric as well as tropospheric aerosol consistently.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kuo Wang ◽  
Han Zhang ◽  
Gao-Feng Fan ◽  
Zheng-Quan Li ◽  
Zhen-Yan Yu ◽  
...  

Since preindustrial times, atmospheric CO2 content increased continuously, leading to global warming through the greenhouse effect. Oceanic carbon sequestration mitigates global warming; on the other hand, oceanic CO2 uptake would reduce seawater pH, which is termed ocean acidification. We perform Earth system model simulations to assess oceanic CO2 uptake, surface temperature, and acidification for Zhejiang offshore, one of the most vulnerable areas to marine disasters. In the last 40 years, atmospheric CO2 concentration increased by 71 ppm, and sea surface temperature (SST) in Zhejiang offshore increased at a rate of 0.16°C/10a. Cumulative oceanic CO2 uptake in Zhejiang offshore is 0.3 Pg C, resulting in an increase of 20% in sea surface hydrogen ion concentration, and the acidification rate becomes faster in the last decade. During 2020–2040, under four RCP scenarios, SST in Zhejiang offshore increases by 0.3–0.5°C, whereas cumulative ocean carbon sequestration is 0.150–0.165 Pg C. Relative to RCP2.6, the decrease of surface pH in Zhejiang offshore is doubled under RCP8.5. Furthermore, simulated results show that the relationship between CO2 scenario and oceanic carbon cycle is nonlinear, which hints that deeper reduction of anthropogenic CO2 emission may be needed if we aim to mitigate ocean acidification in Zhejiang offshore under a higher CO2 concentration scenario. Our study quantifies the variation characteristics of oceanic climate and carbon cycle fields in Zhejiang offshore, and provides new insight into the responses of oceanic carbon cycle and the climate system to oceanic carbon sequestration.


2015 ◽  
Vol 8 (12) ◽  
pp. 5223-5235 ◽  
Author(s):  
C. von Savigny ◽  
F. Ernst ◽  
A. Rozanov ◽  
R. Hommel ◽  
K.-U. Eichmann ◽  
...  

Abstract. Stratospheric aerosol extinction profiles have been retrieved from SCIAMACHY/Envisat measurements of limb-scattered solar radiation. The retrieval is an improved version of an algorithm presented earlier. The retrieved aerosol extinction profiles are compared to co-located aerosol profile measurements from the SAGE II solar occultation instrument at a wavelength of 525 nm. Comparisons were carried out with two versions of the SAGE II data set (version 6.2 and the new version 7.0). In a global average sense the SCIAMACHY and the SAGE II version 7.0 extinction profiles agree to within about 10 % for altitudes above 15 km. Larger relative differences (up to 40 %) are observed at specific latitudes and altitudes. We also find differences between the two SAGE II data versions of up to 40 % for specific latitudes and altitudes, consistent with earlier reports. Sample results on the latitudinal and temporal variability of stratospheric aerosol extinction and optical depth during the SCIAMACHY mission period are presented. The results confirm earlier reports that a series of volcanic eruptions is responsible for the increase in stratospheric aerosol optical depth from 2002 to 2012. Above about an altitude of 28 km, volcanic eruptions are found to have negligible impact in the period 2002–2012.


2009 ◽  
Vol 26 (4) ◽  
pp. 704-718 ◽  
Author(s):  
Bart De Paepe ◽  
Steven Dewitte

Abstract The authors present a new algorithm to retrieve aerosol optical depth (AOD) over a desert using the window channels centered at 8.7, 10.8, and 12.0 μm of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on board the Meteosat Second Generation satellite. The presence of dust aerosols impacts the longwave outgoing radiation, allowing the aerosols over the desert surfaces to be detected in the thermal infrared (IR) wavelengths. To retrieve the aerosol properties over land, the surface contribution to the satellite radiance measured at the top of the atmosphere has to be taken into account. The surface radiation depends on the surface temperature, which is characterized by a strong diurnal variation over the desert, and the surface emissivity, which is assumed to be constant over a time span of 24 h. The surface emissivity is based on clear-sky observations that are corrected for atmospheric absorption and emission. The clear-sky image is a composite of pixels that is characterized by the highest brightness temperature (BT) of the SEVIRI channel at 10.8 μm, and by a negative BT difference between the channels at 8.7 and 10.8 μm. Because of the lower temperatures of clouds and aerosols compared to clear-sky conditions, the authors assume that the selected pixel values are obtained for a clear-sky day. A forward model is used to simulate the thermal IR radiation transfer in the dust layer. The apparent surface radiation for the three window channels in the presence of aerosols is calculated as a function of the surface emissivity and the surface temperature, the aerosol layer temperature, and the AOD for different aerosol loadings. From these simulations two emissivity ratios, which are stored in lookup tables (LUT), are calculated. The retrieval algorithm consists of processing the clear-sky image and computing the surface emissivity, processing the instantaneous image, and computing the apparent surface radiation for the three window channels. The two emissivity ratios are computed using the radiances at 8.7 and 10.8 μm and at 8.7 and 12.0 μm, respectively. The SEVIRI AOD is obtained by the inversion of these emissivity ratios using the corresponding LUT. The algorithm is applied to a minor dust event over the Sahara between 19 and 22 June 2007. For the validation the SEVIRI AOD is compared with the AOD from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) along the satellite track.


2005 ◽  
Vol 5 (5) ◽  
pp. 1311-1339 ◽  
Author(s):  
P. Russell ◽  
J. Livingston ◽  
B. Schmid ◽  
J. Eilers ◽  
R. Kolyer ◽  
...  

Abstract. The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) measured solar- beam transmission on the NASA DC-8 during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II). This paper presents AATS-14 results for multiwavelength aerosol optical depth (AOD), including comparisons to results from two satellite sensors and another DC-8 instrument, namely the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Polar Ozone and Aerosol Measurement III (POAM III) and the Direct-beam Irradiance Airborne Spectrometer (DIAS). AATS-14 provides aerosol results at 13 wavelengths λ spanning the range of SAGE III and POAM III aerosol wavelengths. Because most AATS measurements were made at solar zenith angles (SZA) near 90°, retrieved AODs are strongly affected by uncertainties in the relative optical airmass of the aerosols and other constituents along the line of sight (LOS) between instrument and sun. To reduce dependence of the AATS-satellite comparisons on airmass, we perform the comparisons in LOS transmission and LOS optical thickness (OT) as well as in vertical OT (i.e., optical depth, OD). We also use a new airmass algorithm that validates the algorithm we previously used to within 2% for SZA<90°, and in addition provides results for SZA≥90°. For 6 DC-8 flights, 19 January-2 February 2003, AATS and DIAS results for LOS aerosol OT at λ=400nm agree to ≤12% of the AATS value. Mean and root-mean-square (RMS) differences, (DIAS-AATS)/AATS, are -2.3% and 7.7%, respectively. For DC-8 altitudes, AATS-satellite comparisons are possible only for λ>440nm, because of signal depletion for shorter λ on the satellite full-limb LOS. For the 4 AATS-SAGE and 4 AATS-POAM near-coincidences conducted 19-31 January 2003, AATS-satellite AOD differences were ≤0.0041 for all λ>440nm. RMS differences were ≤0.0022 for SAGE-AATS and ≤0.0026 for POAM-AATS. RMS relative differences in AOD ([SAGE-AATS]/AATS) were ≤33% for λ<~755nm, but grew to 59% for 1020nm and 66% at 1545nm. For λ>~755nm, AATS-POAM differences were less than AATS-SAGE differences, and RMS relative differences in AOD ([AATS-POAM]/AATS) were ≤31% for all λ between 440 and 1020nm. Unexplained differences that remain are associated with transmission differences, rather than differences in gas subtraction or conversion from LOS to vertical quantities. The very small stratospheric AOD values that occurred during SOLVE II added to the challenge of the comparisons, but do not explain all the differences.


2006 ◽  
Vol 19 (13) ◽  
pp. 3033-3054 ◽  
Author(s):  
Scott C. Doney ◽  
Keith Lindsay ◽  
Inez Fung ◽  
Jasmin John

Abstract A new 3D global coupled carbon–climate model is presented in the framework of the Community Climate System Model (CSM-1.4). The biogeochemical module includes explicit land water–carbon coupling, dynamic carbon allocation to leaf, root, and wood, prognostic leaf phenology, multiple soil and detrital carbon pools, oceanic iron limitation, a full ocean iron cycle, and 3D atmospheric CO2 transport. A sequential spinup strategy is utilized to minimize the coupling shock and drifts in land and ocean carbon inventories. A stable, 1000-yr control simulation [global annual mean surface temperature ±0.10 K and atmospheric CO2 ± 1.2 ppm (1σ)] is presented with no flux adjustment in either physics or biogeochemistry. The control simulation compares reasonably well against observations for key annual mean and seasonal carbon cycle metrics; regional biases in coupled model physics, however, propagate clearly into biogeochemical error patterns. Simulated interannual-to-centennial variability in atmospheric CO2 is dominated by terrestrial carbon flux variability, ±0.69 Pg C yr−1 (1σ global net annual mean), which in turn reflects primarily regional changes in net primary production modulated by moisture stress. Power spectra of global CO2 fluxes are white on time scales beyond a few years, and thus most of the variance is concentrated at high frequencies (time scale &lt;4 yr). Model variability in air–sea CO2 fluxes, ±0.10 Pg C yr−1 (1σ global annual mean), is generated by variability in sea surface temperature, wind speed, export production, and mixing/upwelling. At low frequencies (time scale &gt;20 yr), global net ocean CO2 flux is strongly anticorrelated (0.7–0.95) with the net CO2 flux from land; the ocean tends to damp (20%–25%) slow variations in atmospheric CO2 generated by the terrestrial biosphere. The intrinsic, unforced natural variability in land and ocean carbon storage is the “noise” that complicates the detection and mechanistic attribution of contemporary anthropogenic carbon sinks.


Sign in / Sign up

Export Citation Format

Share Document