Rainfall, total water, ice water, and water vapor over sea from polarized microwave simulations and Special Sensor Microwave/Imager data

1993 ◽  
Vol 98 (D11) ◽  
pp. 20737 ◽  
Author(s):  
Peter Bauer ◽  
Peter Schluessel
2007 ◽  
Vol 24 (3) ◽  
pp. 463-475 ◽  
Author(s):  
Sean M. Davis ◽  
A. Gannet Hallar ◽  
Linnea M. Avallone ◽  
William Engblom

Abstract The University of Colorado closed-path tunable diode laser hygrometer (CLH), a new instrument for the in situ measurement of enhanced total water (eTW, the sum of water vapor and condensed water enhanced by a subisokinetic inlet), has recently been flown aboard the NASA DC-8 and WB-57F aircrafts. The CLH has the sensitivity necessary to quantify the ice water content (IWC) of extremely thin subvisual cirrus clouds (∼0.1 mg m−3), while still providing measurements over a large range of conditions typical of upper-tropospheric cirrus (up to 1 g m−3). A key feature of the CLH is its subisokinetic inlet system, which is described in detail in this paper. The enhancement and evaporation of ice particles that results from the heated subisokinetic inlet is described both analytically and based on computational fluid dynamical simulations of the flow around the aircraft. Laboratory mixtures of water vapor with an accuracy of 2%–10% (2σ) were used to calibrate the CLH over a wide range of water vapor mixing ratios (∼50–50 000 ppm) and pressures (∼100–1000 mb). The water vapor retrieval algorithm, which is based on the CLH instrument properties as well as on the spectroscopic properties of the water absorption line, accurately fits the calibration data to within the uncertainty of the calibration mixtures and instrument signal-to-noise ratio. A method for calculating cirrus IWC from the CLH enhanced total water measurement is presented. In this method, the particle enhancement factor is determined from an independent particle size distribution measurement and the size-dependent CLH inlet efficiency. It is shown that despite the potentially large uncertainty in particle size measurements, the error introduced by this method adds ∼5% error to the IWC calculation. IWC accuracy ranges from 20% at the largest IWC to 50% at small IWC (<5 mg m−3).


2015 ◽  
Vol 8 (1) ◽  
pp. 211-224 ◽  
Author(s):  
T. D. Thornberry ◽  
A. W. Rollins ◽  
R. S. Gao ◽  
L. A. Watts ◽  
S. J. Ciciora ◽  
...  

Abstract. The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of upper troposphere/lower stratosphere water vapor and enhanced total water (vapor + inertially enhanced condensed phase) from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure, and flow conditions to maintain a constant sensitivity to H2O independent of the ambient sampling environment. An onboard calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cloud water content sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February–March 2013 on the NASA Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1σ) of better than 0.17 parts per million (ppm, 10−6 mol mol−1), with an overall H2O vapor measurement uncertainty of 5% ± 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33 to 48 for ice particles larger than 8 μm in diameter, depending primarily on aircraft altitude. The resulting ice water content detection limit (2σ) was 0.023–0.013 ppm, corresponding to approximately 2 μg m−3, with an estimated overall uncertainty of 20%.


2014 ◽  
Vol 7 (8) ◽  
pp. 8271-8309 ◽  
Author(s):  
T. D. Thornberry ◽  
A. W. Rollins ◽  
R. S. Gao ◽  
L. A. Watts ◽  
S. J. Ciciora ◽  
...  

Abstract. The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of water vapor and enhanced total water (vapor + inertially enhanced condensed-phase) in the upper troposphere/lower stratosphere from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure and flow conditions to maintain a constant sensitivity to H2O independent of the ambient sampling environment. An on-board calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cloud water content sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February–March 2013 on board the Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1σ) of better than 0.17 parts per million (ppm, 10−6 mol mol−1), with an overall H2O vapor measurement uncertainty of 5% ± 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33–48 for ice particles larger than 8 μm in diameter, depending primarily on aircraft altitude. The resulting ice water content detection limit (2σ) was 0.023–0.013 ppm, corresponding to approximately 2 μg m−3, with an estimated overall uncertainty of 20%.


2006 ◽  
Vol 23 (11) ◽  
pp. 1410-1421 ◽  
Author(s):  
E. M. Weinstock ◽  
J. B. Smith ◽  
D. Sayres ◽  
J. V. Pittman ◽  
N. Allen ◽  
...  

Abstract This paper describes the performance and in-flight validation of an instrument mounted in a pallet on the NASA WB-57 research aircraft that measures the sum of gas phase and solid phase water, or total water, in cirrus clouds. Using a heated isokinetic inlet and a Lyman-α photofragment fluorescence technique for detection, measurements of total water have been made over three orders of magnitude. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers Florida Area Cirrus Experiment (CRYSTAL FACE), the instrument operated at duct temperatures sufficiently warms to completely evaporate particles up to 150-μm diameter. Laboratory calibrations, in-flight diagnostics, intercomparison with water vapor measured by absorption in flight, and intercomparisons in clear air with the Harvard water vapor instrument validate the detection sensitivity of the instrument and illustrate the minimal hysteresis from instrument surface contamination. The Harvard total water and water vapor instruments together provide measurements of the ice water content of cirrus clouds in the mid- and upper troposphere with an uncertainty of 18%.


2010 ◽  
Vol 14 (3) ◽  
pp. 209-214 ◽  
Author(s):  
Sun-Ho Park ◽  
Yong-Gi Kim ◽  
Duk-Hyeon Kim ◽  
Hai-Du Cheong ◽  
Won-Seok Choi ◽  
...  
Keyword(s):  

2020 ◽  
Vol 237 ◽  
pp. 06017
Author(s):  
Fuchao Liu ◽  
Fan Yi

We report on a spectrally-resolved Raman lidar that can simultaneously profile backscattered Raman spectrum signals from water vapor, water droplets and ice crystals as well as aerosol fluorescence in the atmosphere. The lidar emits a 354.8-nm ultraviolet laser radiation and samples echo signals in the 393.0-424.0 nm wavelength range with a 1.0-nm spectral resolution. A spectra decomposition method is developed to retrieve fluorescence spectra, water vapor Raman spectra and condensed (liquid and/or ice) water Raman spectra successively. Based on 8 different clear-sky nighttime measurement results, the entire atmospheric water vapor Raman spectra are for the first time obtained by lidar. The measured normalized water vapor Raman spectra are nearly invariant and can serve as background reference for atmospheric water phase state identification under various weather conditions. For an ice virga event, it’s found the extracted condensed water Raman spectra are highly similar in shape to theoretical ice water Raman spectra reported by Slusher and Derr (1975). In conclusion, the lidar provides an effective way to measure three-phase water simultaneously in the atmosphere and to study of cloud microphysics as well as interaction between aerosols and clouds.


2014 ◽  
Vol 27 (9) ◽  
pp. 3114-3128 ◽  
Author(s):  
Zhiwei Heng ◽  
Yunfei Fu ◽  
Guosheng Liu ◽  
Renjun Zhou ◽  
Yu Wang ◽  
...  

Abstract In this paper, the global distribution of cloud water based on International Satellite Cloud Climatology Project (ISCCP), Moderate Resolution Imaging Spectroradiometer (MODIS), CloudSat Cloud Profiling Radar (CPR), European Center for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim), and Climate Forecast System Reanalysis (CFSR) datasets is presented, and the variability of cloud water from ISCCP, the Special Sensor Microwave Imager (SSM/I), ERA-Interim, and CFSR data over the time period of 1995 through 2009 is discussed. The results show noticeable differences in cloud water over land and over ocean, as well as latitudinal variations. Large values of cloud water are mainly distributed over the North Pacific and Atlantic Oceans, eastern ITCZ, regions off the west coast of the continents as well as tropical rain forest. Cloud water path (CWP), liquid water path (LWP), and ice water path (IWP) from these datasets show a relatively good agreement in distributions and zonal means. The results of trend analyzing show an increasing trend in CWP, and also a significant increasing trend of LWP can be found in the dataset of ISCCP, ERA-Interim, and CFSR over the ocean. Besides the long-term variation trend, rises of cloud water are found when temperature and water vapor exhibit a positive anomaly. EOF analyses are also applied to the anomalies of cloud water, the first dominate mode of CWP and IWP are similar, and a phase change can be found in the LWP time coefficient around 1999 in ISCCP and CFSR and around 2002 in ERA-Interim.


2009 ◽  
Vol 9 (15) ◽  
pp. 5847-5864 ◽  
Author(s):  
J. S. Wright ◽  
R. Fu ◽  
A. J. Heymsfield

Abstract. The factors that control the influence of deep convective detrainment on water vapor in the tropical upper troposphere are examined using observations from multiple satellites in conjunction with a trajectory model. Deep convection is confirmed to act primarily as a moisture source to the upper troposphere, modulated by the ambient relative humidity (RH). Convective detrainment provides strong moistening at low RH and offsets drying due to subsidence across a wide range of RH. Strong day-to-day moistening and drying takes place most frequently in relatively dry transition zones, where between 0.01% and 0.1% of Tropical Rainfall Measuring Mission Precipitation Radar observations indicate active convection. Many of these strong moistening events in the tropics can be directly attributed to detrainment from recent tropical convection, while others in the subtropics appear to be related to stratosphere-troposphere exchange. The temporal and spatial limits of the convective source are estimated to be about 36–48 h and 600–1500 km, respectively, consistent with the lifetimes of detrainment cirrus clouds. Larger amounts of detrained ice are associated with enhanced upper tropospheric moistening in both absolute and relative terms. In particular, an increase in ice water content of approximately 400% corresponds to a 10–90% increase in the likelihood of moistening and a 30–50% increase in the magnitude of moistening.


Sign in / Sign up

Export Citation Format

Share Document