Science and Environmental Management in the Mcmurdo Dry Valleys, Southern Victoria Land, Antarctica

Author(s):  
Colin M. Harris
2004 ◽  
Vol 109 (D3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Thomas H. Nylen ◽  
Andrew G. Fountain ◽  
Peter T. Doran

1996 ◽  
Vol 8 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Jenny Webster ◽  
Ian Hawes ◽  
Malcolm Downes ◽  
Michael Timperley ◽  
Clive Howard-Williams

Lake Wilson, a perennially ice-capped, deep (>100 m) lake at 80°S in southern Victoria Land was investigated in January 1993. Water chemistry and physical structure showed three distinct layers; an upper c. 35 m mixed layer of low salinity, moderately turbid water; a less turbid mid layer, 20 m thick of slightly higher salinity and supersaturated with oxygen; and a deep 20 m brackish layer (conductivity c. 4000 μS cm−1) with anoxic conditions in the lower 5 m. Extreme supersaturation of N2O (up to 400 times air saturation) together with high nitrate concentration (4000 mg m−3) was recorded in the deep layer. Phytoplankton biomass and photosynthetic activity was confined to the upper mixed layer and the band of supersaturated dissolved oxygen located at 40–55 m appears to represent a relict layer from when the lake level was lower. The evidence from a comparison of profiles between 1975 and 1993 suggests that Lake Wilson has risen 25 m since 1975, synchronous with a period of lake level rise in the McMurdo Dry Valleys lakes to the north at 77°S. Geochemical diffusion models indicate that Lake Wilson had evaporated to a smaller brine lake about 1000 yrs BP, which also fits the pattern shown by the McMurdo Dry Valleys lakes. Climate changes influencing lake levels have thus covered a wide area of southern Victoria Land.


1998 ◽  
Vol 10 (3) ◽  
pp. 247-256 ◽  
Author(s):  
W.B. Lyons ◽  
S.W. Tyler ◽  
R.A. Wharton ◽  
D.M. McKnight ◽  
B.H. Vaughn

Stable isotope data from waters of lakes in the McMurdo Dry Valleys (MDV) of southern Victoria Land, Antarctica are presented in order to establish the climatic history of this region over the past two millennia. New data from Lake Fryxell and Lake Hoare in Toylor Valley, along with previously published data from Lake Vanda, Wright Valley and Lake Bonney, Taylor Valley are used to infer the recent climatic history of MDV. Lakes Vanda, Fryxell and Bonney appear to have lost their ice covers and evaporated to small, hypersaline ponds by 1000 to ~1200 yr BP. Lake Hoare either desiccated or did not exist prior to 1200 yr BP. These data indicate a major lowering of lake level prior to ~1000 yr BP, followed by a warmer and/or more humid climate since then.


Polar Record ◽  
2005 ◽  
Vol 41 (1) ◽  
pp. 77-96 ◽  

The texts of the Decisions and Resolutions, and the text of Measure 1 (2004), together with a summary of the Management Plan for Antarctic Specially Managed area No. 2, McMurdo Dry Valleys, Southern Victoria Land, adopted at XXVII ATCM were reproduced in SCAR Bulletin No 155, October 2004. A summary of the Management Plan for Antarctic Specially Managed Area No. 3, Cape Denison, Commonwealth Bay, George V land, together with Measures 2–4, are reproduced here. The full versions of all the Decisions, Measures and Resolutions are on the Antarctic Treaty Secretariat website at http://www.ats.org.ar/


1992 ◽  
Vol 4 (1) ◽  
pp. 37-39 ◽  
Author(s):  
R.D. Seppelt ◽  
T.G.A. Green ◽  
A-M.J. Schwarz ◽  
A. Frost

Abundant immature sporophytes of the moss Pottia heimii are reported from the Lower Taylor Valley, McMurdo Dry Valleys and from Cape Chocolate, Victoria Land. These finds extend the reported southern limit for the occurrence of abundant moss sporophytes to 77° 55′S.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257950
Author(s):  
Stephen M. Chignell ◽  
Madeline E. Myers ◽  
Adrian Howkins ◽  
Andrew G. Fountain

As in many parts of the world, the management of environmental science research in Antarctica relies on cost-benefit analysis of negative environmental impact versus positive scientific gain. Several studies have examined the environmental impact of Antarctic field camps, but very little work looks at how the placement of these camps influences scientific research. In this study, we integrate bibliometrics, geospatial analysis, and historical research to understand the relationship between field camp placement and scientific production in the McMurdo Dry Valleys of East Antarctica. Our analysis of the scientific corpus from 1907–2016 shows that, on average, research sites have become less dispersed and closer to field camps over time. Scientific output does not necessarily correspond to the number of field camps, and constructing a field camp does not always lead to a subsequent increase in research in the local area. Our results underscore the need to consider the complex historical and spatial relationships between field camps and research sites in environmental management decision-making in Antarctica and other protected areas.


Author(s):  
Andrew G. Fountain ◽  
Gayle L. Dana ◽  
Karen J. Lewis ◽  
Bruce H. Vaughn ◽  
Diane H. Mcknight

1998 ◽  
Vol 10 (4) ◽  
pp. 439-448 ◽  
Author(s):  
Nobuki Takamatsu ◽  
Naoyuki Kato ◽  
Genki I. Matsumoto ◽  
Tetsuya Torii

Lithium distributions in lake and pond waters of the McMurdo Dry Valleys of southern Victoria Land, Antarctica were studied to elucidate the origin of dissolved salts and the evolutionary history of the lakes and ponds. The EfLi [(Li/Cl)sample/(Li/Cl)seawater] values of the bottom waters in Lakes Bonney and Fryxell were higher than unity (EfLi=4–7), indicating that the salts originated from sea salts (probably relict seawater) and have been subsequently modified by the contribution of meltwaters containing atmospheric fallout and/or rock and soil weathering products. In contrast, extremely high Li concentrations with high EfLi values in the Don Juan Pond water (EfLi = 180) and the bottom waters of Lake Vanda (EfLi = 40) suggest that the salts originated from deep groundwaters influenced mainly by saline water-rock interactions, as supported by the dissolution experiments of granite in NaCl solution. The low Li concentrations of pond waters with high EfLi values in the Labyrinth indicate that the salts are derived from atmospheric fallout. The decrease of the EfLi values with the increase of Cl concentrations can be explained by the repeated cycles of the migration of Li into the ice phase and subsequent ablation of surface ice, as indicated by seawater freezing experiments.


Sign in / Sign up

Export Citation Format

Share Document