Explicit time-dependent solutions and numerical evaluations for penny-shaped hydraulic fracture models

1987 ◽  
Vol 92 (B8) ◽  
pp. 8049 ◽  
Author(s):  
S. H. Advani ◽  
J. S. Torok ◽  
J. K. Lee ◽  
S. Choudhry
1986 ◽  
Vol 108 (2) ◽  
pp. 107-115 ◽  
Author(s):  
I. D. Palmer ◽  
C. T. Luiskutty

There is a pressing need to compare and evaluate hydraulic fracture models which are now being used by industry to predict variable fracture height. The fractures of concern here are vertical fractures which have a pronounced elongation in the direction of the payzone, i.e., there is a dominant one-dimensional fluid flow along the payzone direction. A summary is given of the modeling entailed in the basic ORU fracture model, which calculates fracture height as a function of distance from the wellbore in the case of a continuous sand bounded by zones of higher (but equal) minimum in-situ stress. The elastic parameters are assumed the same in each layer, and injected flow rates and fluid parameters are taken to be constant. Leak-off is included with spurt loss, as well as non-Newtonian flow. An advantage of the model is its small computer run time. Predictions for wellbore height and pressure from the ORU model are compared separately with the AMOCO and MIT pseudo-3D models. In one instance of high stress contrast the ORU wellbore pressure agrees fairly well with the AMOCO model, but the AMOCO wellbore height is greater by 32 percent. Comparison between the ORU and MIT models in two cases (also high stress contrast) indicates height disagreement at the wellbore by factors of 1.5–2.5 with the MIT model giving a lower height. Thus it appears there can be substantial discrepancies between all three models. Next we compare the ORU model results with six cases of elongated fractures from the TERRA-TEK fully-3D model. Although two of these cases are precluded due to anomolous discrepancies, the other four cases show reasonable agreement. We make a critical examination of assumptions that differ in all the models (e.g., the effective modulus-stiffness multiplier approximation in the AMOCO model, the effect of finite fluid flow in the vertical direction in the MIT model, and the effect of 2D flow and limited perforated height in the TERRA-TEK model). Suggestions are made for reconciling some of the discrepancies between the various models. For example, the ORU/AMOCO height discrepancy appears to be resolved; for other discrepancies we have no explanation. Our main conclusion is that the AMOCO, TERRA-TEK and ORU models for fracture height and bottomhole pressure are in reasonable agreement for highly elongated fractures. Despite the difficulties in understanding the different models, the comparisons herein are an encouraging first step towards normalizing these hydraulic fracture models.


2019 ◽  
Vol 38 (2) ◽  
pp. 130-137 ◽  
Author(s):  
Robert Hull ◽  
Robert Meek ◽  
Hector Bello ◽  
Kevin Woller ◽  
Jed Wagner

A variety of methods are utilized in an instrumented vertical wellbore to invert for and estimate the heights and lateral extents of the hydraulic fracture treatment. Data were acquired with externally mounted dual- and single-mode fiber optics for measuring strain, acoustics, and temperature. In addition, external pressure gauges, internal conventional tiltmeters, and geophones were also utilized. This instrumented well was used multiple times to record a number of nearby offset horizontal hydraulic stimulations and to record a time-lapse vertical seismic profile. By using multiple data acquisition techniques, we obtained a more comprehensive and accurate estimation of the hydraulic fracture geometry and the dynamic processes taking place internal to the propagating fractures. Furthermore, these data could be used to calibrate fracture models and the fracture interaction with the surrounding unconventional reservoir.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6474
Author(s):  
Tri Pham ◽  
Ruud Weijermars

The Time-Stepped Linear Superposition Method (TLSM) has been used previously to model and analyze the propagation of multiple competitive hydraulic fractures with constant internal pressure loads. This paper extends the TLSM methodology, by including a time-dependent injection schedule using pressure data from a typical diagnostic fracture injection test (DFIT). In addition, the effect of poro-elasticity in reservoir rocks is accounted for in the TLSM models presented here. The propagation of multiple hydraulic fractures using TLSM-based codes preserves infinite resolution by side-stepping grid refinement. First, the TLSM methodology is briefly outlined, together with the modifications required to account for variable time-dependent pressure and poro-elasticity in reservoir rock. Next, real world DFIT data are used in TLSM to model the propagation of multiple dynamic fractures and study the effect of time-dependent pressure and poro-elasticity on the development of hydraulic fracture networks. TLSM-based codes can quantify and visualize the effects of time-dependent pressure, and poro-elasticity can be effectively analyzed, using DFIT data, supported by dynamic visualizations of the changes in spatial stress concentrations during the fracture propagation process. The results from this study may help develop fracture treatment solutions with improved control of the fracture network created while avoiding the occurrence of fracture hits.


2016 ◽  
Author(s):  
Kevin H. Searles ◽  
Matias G. Zielonka ◽  
Jing Ning ◽  
Jorge L. Garzon ◽  
Nikolay M. Kostov ◽  
...  

2001 ◽  
Vol 117 (2) ◽  
pp. 101-108
Author(s):  
Erqi WANG ◽  
Kiyotoshi SAKAGUCHI ◽  
Kiyohiko OKUMURA ◽  
Koji MATSUKI

2021 ◽  
Author(s):  
Franz Marketz ◽  
David Brown ◽  
Roman Alyabiev ◽  
Pavel Khudorozhkov ◽  
Oleg Sychov

Abstract The cuttings re-injection (CRI) well in the Astokh area of Piltun-Astokhskoye field offshore Sakhalin Russia is one of the longest operating drilling waste disposal wells in the oil and gas industry worldwide. The Astokh area has been developed as a waterflood and is operated by Sakhalin Energy, a joint venture between Gazprom, Shell, Mitsui, and Mitsubishi. The Astokh CRI well has been utilized for waste injection for over 16 years. About 300,000 m3 of waste has been disposed into the main injection zone of the CRI well. Monitoring and modelling the CRI process to understand the evolution of the disposal domain is paramount for safeguarding further disposal operations. The disposal domain can be described as a complex system of multiple hydraulic and natural fractures due to injection under fracturing conditions. CRI domain evaluation includes analysis of historical injection pressures to identify the reasons of continuous injection pressure increase with increasing cumulative waste volumes disposed, to confirm domain containment, and to predict remaining domain capacity. Transient pressure analysis has revealed that the fracture closure pressure, driven by pore pressure increase and the accumulation of injected solid-phase waste, is the key parameter affecting injection pressures. Injection intensity, periods of shut-in, large overflushes, and solids-free liquids injections with corresponding solids and stresses redistribution are the other factors that affecting the pressure trends. CRI domain mapping was carried out with history-matched time-lapse 3D hydraulic fracture models. Injection pressure history matching results reveal the fracture geometry evolution during well life. The distribution of the injected liquid phase in the sand layers was modeled with a 3D dynamic reservoir sector model, matched with injection pressures and with formation pressure data in two offset wells, located at a distance of 1 and 2 kilometers, respectively. A matched model was then used to assure fracture containment for future waste disposal and to estimate remaining domain capacity. High-precision temperature and spectral noise logs were acquired in seawater injection and shut-in modes. The log-derived fracture height confirmed the domain size predicted by the matched model. 4D seismic data processing revealed that dimensions of Geomechanically Altered Rock Volume (GARV) were also in the same range as predicted by the model p. The integration of CRI domain evaluation with matched 3D hydraulic fracture models, well logs and 4D seismic demonstrated that injection pressure data collected during every injection cycle may be sufficient to characterize disposal domain evolution and to estimate domain capacity.


Sign in / Sign up

Export Citation Format

Share Document