Comparison of Hydraulic Fracture Models for Highly Elongated Fractures of Variable Height

1986 ◽  
Vol 108 (2) ◽  
pp. 107-115 ◽  
Author(s):  
I. D. Palmer ◽  
C. T. Luiskutty

There is a pressing need to compare and evaluate hydraulic fracture models which are now being used by industry to predict variable fracture height. The fractures of concern here are vertical fractures which have a pronounced elongation in the direction of the payzone, i.e., there is a dominant one-dimensional fluid flow along the payzone direction. A summary is given of the modeling entailed in the basic ORU fracture model, which calculates fracture height as a function of distance from the wellbore in the case of a continuous sand bounded by zones of higher (but equal) minimum in-situ stress. The elastic parameters are assumed the same in each layer, and injected flow rates and fluid parameters are taken to be constant. Leak-off is included with spurt loss, as well as non-Newtonian flow. An advantage of the model is its small computer run time. Predictions for wellbore height and pressure from the ORU model are compared separately with the AMOCO and MIT pseudo-3D models. In one instance of high stress contrast the ORU wellbore pressure agrees fairly well with the AMOCO model, but the AMOCO wellbore height is greater by 32 percent. Comparison between the ORU and MIT models in two cases (also high stress contrast) indicates height disagreement at the wellbore by factors of 1.5–2.5 with the MIT model giving a lower height. Thus it appears there can be substantial discrepancies between all three models. Next we compare the ORU model results with six cases of elongated fractures from the TERRA-TEK fully-3D model. Although two of these cases are precluded due to anomolous discrepancies, the other four cases show reasonable agreement. We make a critical examination of assumptions that differ in all the models (e.g., the effective modulus-stiffness multiplier approximation in the AMOCO model, the effect of finite fluid flow in the vertical direction in the MIT model, and the effect of 2D flow and limited perforated height in the TERRA-TEK model). Suggestions are made for reconciling some of the discrepancies between the various models. For example, the ORU/AMOCO height discrepancy appears to be resolved; for other discrepancies we have no explanation. Our main conclusion is that the AMOCO, TERRA-TEK and ORU models for fracture height and bottomhole pressure are in reasonable agreement for highly elongated fractures. Despite the difficulties in understanding the different models, the comparisons herein are an encouraging first step towards normalizing these hydraulic fracture models.

SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2148-2162 ◽  
Author(s):  
Pengcheng Fu ◽  
Jixiang Huang ◽  
Randolph R. Settgast ◽  
Joseph P. Morris ◽  
Frederick J. Ryerson

Summary The height growth of a hydraulic fracture is known to be affected by many factors that are related to the layered structure of sedimentary rocks. Although these factors are often used to qualitatively explain why hydraulic fractures usually have well–bounded height growth, most of them cannot be directly and quantitatively characterized for a given reservoir to enable a priori prediction of fracture–height growth. In this work, we study the role of the “roughness” of in–situ–stress profiles, in particular alternating low and high stress among rock layers, in determining the tendency of a hydraulic fracture to propagate horizontally vs. vertically. We found that a hydraulic fracture propagates horizontally in low–stress layers ahead of neighboring high–stress layers. Under such a configuration, a fracture–mechanics principle dictates that the net pressure required for horizontal growth of high–stress layers within the current fracture height is significantly lower than that required for additional vertical growth across rock layers. Without explicit consideration of the stress–roughness profile, the system behaves as if the rock is tougher against vertical propagation than it is against horizontal fracture propagation. We developed a simple relationship between the apparent differential rock toughness and characteristics of the stress roughness that induce equivalent overall fracture shapes. This relationship enables existing hydraulic–fracture models to represent the effects of rough in–situ stress on fracture growth without directly representing the fine–resolution rough–stress profiles.


SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2292-2307 ◽  
Author(s):  
Jizhou Tang ◽  
Kan Wu ◽  
Lihua Zuo ◽  
Lizhi Xiao ◽  
Sijie Sun ◽  
...  

Summary Weak bedding planes (BPs) that exist in many tight oil formations and shale–gas formations might strongly affect fracture–height growth during hydraulic–fracturing treatment. Few of the hydraulic–fracture–propagation models developed for unconventional reservoirs are capable of quantitatively estimating the fracture–height containment or predicting the fracture geometry under the influence of multiple BPs. In this paper, we introduce a coupled 3D hydraulic–fracture–propagation model considering the effects of BPs. In this model, a fully 3D displacement–discontinuity method (3D DDM) is used to model the rock deformation. The advantage of this approach is that it addresses both the mechanical interaction between hydraulic fractures and weak BPs in 3D space and the physical mechanism of slippage along weak BPs. Fluid flow governed by a finite–difference methodology considers the flow in both vertical fractures and opening BPs. An iterative algorithm is used to couple fluid flow and rock deformation. Comparison between the developed model and the Perkins–Kern–Nordgren (PKN) model showed good agreement. I–shaped fracture geometry and crossing–shaped fracture geometry were analyzed in this paper. From numerical investigations, we found that BPs cannot be opened if the difference between overburden stress and minimum horizontal stress is large and only shear displacements exist along the BPs, which damage the planes and thus greatly amplify their hydraulic conductivity. Moreover, sensitivity studies investigate the impact on fracture propagation of parameters such as pumping rate (PR), fluid viscosity, and Young's modulus (YM). We investigated the fracture width near the junction between a vertical fracture and the BPs, the latter including the tensile opening of BPs and shear–displacement discontinuities (SDDs) along them. SDDs along BPs increase at the beginning and then decrease at a distance from the junction. The width near the junctions, the opening of BPs, and SDDs along the planes are directly proportional to PR. Because viscosity increases, the width at a junction increases as do the SDDs. YM greatly influences the opening of BPs at a junction and the SDDs along the BPs. This model estimates the fracture–width distribution and the SDDs along the BPs near junctions between the fracture tip and BPs and enables the assessment of the PR required to ensure that the fracture width at junctions and along intersected BPs is sufficient for proppant transport.


2015 ◽  
Author(s):  
Dimitry Chuprakov ◽  
Romain Prioul

Abstract Weak formation bedding planes create a unique mechanism for hydraulic fracture height containment. They arrest the vertical growth of hydraulic fracture. The propagation across them may or may not occur. To quantify this fracture behavior, first we developed an analytical model of the elastic T-shaped fracture contact with frictional and cohesional interfaces. The model evaluates the fracture blunting and the shear activation of the interfaces. It predicts the buildup of the net pressure necessary for the fracture to cross the given interface. Next we conduct numerical simulations of the 3D fracture propagation in a formation with closely spaced horizontal interfaces. These simulations manifest intermittent and decelerated fracture growth in height, especially with low-viscosity fracturing fluids. This mechanism of fracture height containment is independent of the multilayer stress-contrast mechanism used conventionally. Combined with the stress mechanism, the fracture height containment model could alleviate the problem of height growth overestimation in some fracturing simulation cases.


1983 ◽  
Vol 23 (06) ◽  
pp. 870-878 ◽  
Author(s):  
Ian D. Palmer ◽  
H.B. Carroll

Abstract Models of three-dimensional (3D) fracture propagation are being developed to study the effect of variations of stress and rock properties on fracture height and bottomhole pressure (BHP). Initially a blanket sand bounded by zones of higher minimum in-situ stress is considered, with stresses symmetrical about both the pay-zone axis and the wellbore. An elliptical fracture perimeter is assumed. Fluid flows are one-dimensional (1D) Newtonian in the direction of the pay zone. Two models, FL1 and FL2, are developed. In FL1, a discontinuous stress variation is approximated by a y2 variation in the vertical coordinate, and the fracture criterion, Ki = Kc, is satisfied at both major and minor axes. The net pressure at the tip, Lf, of the long axis required by the boundary condition Ki = Kc does not seem crucial in determining fracture height or BHP (compare with one group of published models that assumes p = 0 at Lf). Model FL2 properly represents the discontinuous stresses, and satisfies Ki = Kc at the wellbore but not at the tip of the long axis. A parametric study is made, with both models, of the comparative effects of stress contrast, Kc, pay-zone height, h, and Young's modulus, E, on fracture height and BHP. Results indicate that Kc does not have as much effect as either E or, at least for large stress contrasts. Model FL2 suggests the possibility of a rapid growth in fracture height as is reduced. Such modeling may be able to give an upper or "safe" limit on the pumping parameters ( and ) to ensure good containment. When the stress contrast is high, 700 psi [4826 kPa], an analytic derivation of BHP appears to be a good approximation for the parameters we use, if everywhere the fracture height is assumed equal to the pay zone height. Although leakoff is neglected here, subsequent modeling results show that, for leak off coefficients 0.001 ft- min [3.9 × 10 -5 m.s ], the results herein are a good approximation to the case when leak off is included. Introduction In their essence, models of hydraulic fracture propagation involve elasticity theory and fluid mechanics. The first is concerned with the fracture opening or width, w(p), as a function of net pressure on the fracture faces, while the second is concerned with the pressure drop, p(w), caused by the flow of viscous fluids in the fracture. Simultaneous solution of these equations includes a boundary condition that often takes the form Ki = Kc, where Ki is the stress-intensity factor at a point on the fracture tip, and Kc is the fracture toughness. The final solution is very complex in 3D, when a vertical fracture can expand vertically as well as horizontally along the pay zone. Thus, the first solutions were essentially two-dimensional (2D), and they assumed that the fracture height, hf, was fixed at the pay zone height, h. The 2D solutions were clustered in two groups as summarized by Nordgren, Perkins, and Geertsma and Haafkens. The first grouping, based on a model by Christianovich and Zheltov, assumed that the sides of an elongated, vertical fracture were parallel (i.e., free slippage between the pay and bounding zones, or no vertical stiffness). Other papers in this grouping included Geertsma and de Klerk, Daneshy and Settari. SPEJ P. 870^


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. MR93-MR105 ◽  
Author(s):  
Pengju Xing ◽  
Keita Yoshioka ◽  
Jose Adachi ◽  
Amr El-Fayoumi ◽  
Andrew P. Bunger

Decades of research have led to numerous insights in modeling the impact of stresses and rock properties on hydraulic fracture height growth. However, the conditions under which weak horizontal interfaces are expected to impede height growth remain for the most part unknown. We have developed an experimental study of the impact of weak horizontal discontinuities on hydraulic fracture height growth, including the influences of (1) abrupt stress contrasts between layers, (2) material fracture toughness, and (3) contrasts of stiffness between the reservoir and bounding layers. The experiments are carried out with an analog three-layered medium constructed from transparent polyurethane, considering toughnesses resisting vertical fracture growth. There are four observed geometries: containment, height growth, T-shape growth, and the combination of height growth and T-shape. Results are developed in a parametric space embodying the influence of the horizontal stress contrast, vertical stress, and horizontal barrier stress contrast, as well as the fluid pressure. The results indicate that these cases fall within distinct regions when plotted in the parametric space. The locations in the parametric space of these regions are strongly impacted by the vertical fracture toughness: Increasing the value of the vertical interface fracture toughness leads to a suppression of height growth in favor of containment and T-shaped growth. Besides providing detailed experimental data for benchmarking 3D hydraulic fracture simulators, these experiments show that the fracture height is substantially less than would be predicted in the absence of the weak horizontal discontinuities.


2012 ◽  
Vol 27 (01) ◽  
pp. 8-19 ◽  
Author(s):  
M. Kevin Fisher ◽  
Norman R. Warpinski

2022 ◽  
Author(s):  
Rinat Lukmanov ◽  
Said Jabri ◽  
Ehab Ibrahim

Abstract The tight gas reservoirs of Haima Supergroup provide the majority of gas production in the Sultanate of Oman. The paper discusses a possibility of using the anomalies from natural radioactivity to evaluate the fracture height for complex tight gas in mature fields of Oman. The standard industry practice is adding radioactive isotopes to the proppant. Spectral Gamma Ray log is used to determine near wellbore traced proppant placement. Spectral Noise log in combination with Production logs helps to identify the active fractures contributing to production. These methods complement each other, but they are obviously associated with costs. Hence, majority of wells are fracced without tracers or any other fracture height diagnostics. However, in several brown fields, an alternative approach to identify fracture height has been developed which provides fit-for-purpose results. It is based on the analysis of naturally occurring radioactive minerals (NORM) precipitation. The anomalies were observed in the many gas reservoirs even in cases when tracers were not used. At certain conditions, these anomalies can be used to characterize fracture propagation and optimize future wells hydraulic Fracture design. A high number of PLTs and well test information were analyzed. Since tight formations normally don't produce without fracturing, radioactive anomalies flag the contributing intervals and hence fracture propagation. The main element of analysis procedure is related to that fact that if no tracers applied, the discrepancy between normalized Open Hole Gamma Ray and Gamma Ray taken during PLT after 6-12 months of production can be used instead to establish fracture height. This method cannot be applied for immediate interpretation of fracture propagation because time is required to precipitate NORM and using the anomalies concept. The advantage of this method is that it can be used in some fields to estimate the frac effectiveness of wells without artificial tracers. It is normally assumed that the Natural radioactivity anomalies appear mainly due to co-production of the formation water. However, in the fields of interest the anomalies appear in wells producing only gas and condensate. This observation provides an opportunity for active fracture height determination at minimum cost.


2016 ◽  
Author(s):  
Feng Gui ◽  
Khalil Rahman ◽  
Duncan Lockhart ◽  
Diogo Cunha ◽  
Dylan Meadows

Sign in / Sign up

Export Citation Format

Share Document