On the long-period effects in the motion of an artificial satellite caused by the ellipticity of the equator of the Earth

1962 ◽  
Vol 67 (1) ◽  
pp. 313-319 ◽  
Author(s):  
Peter Musen
2001 ◽  
Vol 10 (04) ◽  
pp. 465-476 ◽  
Author(s):  
LORENZO IORIO

In order to detect the gravitomagnetic clock effect by means of two counter-orbiting satellites placed on identical equatorial and circular orbits around the Earth with radius 7000 km their radial and azimuthal positions must be known with an accuracy of δr=10-1 mm and δϕ=10-2 mas (milliarcseconds) per revolution. In this work we investigate if the radial and azimuthal perturbations induced by the dynamical and static parts of the Earth's gravitational field meet these requirements. While the radial direction is affected only by harmonic perturbations with periods up to some tens of days, the azimuthal location is perturbed by a secular drift and very long period effects. It results that the present level of accuracy in the knowledge both of the Earth solid and ocean tides, and of the static part of the geopotential does not allow an easy detection of the gravitomagnetic clock effect at least by using short arcs only.


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1954 ◽  
Vol 44 (3) ◽  
pp. 471-479
Author(s):  
Maurice Ewing ◽  
Frank Press

Abstract Mantle Rayleigh waves from the Kamchatka earthquake of November 4, 1952, are analyzed. The new Palisades long-period vertical seismograph recorded orders R6–R15, the corresponding paths involving up to seven complete passages around the earth. The dispersion data for periods below 400 sec. are in excellent agreement with earlier results and can be explained in terms of the known increase of shear velocity with depth in the mantle. Data for periods 400-480 sec. indicate a tendency for the group velocity curve to level off, suggesting that these long waves are influenced by a low or vanishing shear velocity in the core. Deduction of internal friction in the mantle from wave absorption gives a value 1/Q = 370 × 10−5 for periods 250-350 sec. This is a little over half the value reported earlier for periods 140-215 sec.


Author(s):  
Yuri P. Perevedentsev ◽  
Konstantin M. Shantalinskii ◽  
Boris G. Sherstukov ◽  
Alexander A. Nikolaev

Long-term changes in air temperature on the territory of the Republic of Tatarstan in the 20th–21st centuries are considered. The periods of unambiguous changes in the surface air temperature are determined. It is established that the average winter temperature from the 1970s to 2017, increased in the Kazan region by more than 3 °C and the average summer temperature increased by about 2 °C over the same period. The contribution of global scale processes to the variability of the temperature of the Kazan region is shown: it was 37 % in winter, 23 % in summer. The correlation analysis of the anomalies of average annual air temperature in Kazan and the series of air temperature anomalies in each node over the continents, as well as the ocean surface temperature in each coordinate node on Earth for 1880 –2017, was performed. Long-distance communications were detected in the temperature field between Kazan and remote regions of the Earth. It is noted that long-period climate fluctuations in Kazan occur synchronously with fluctuations in the high latitudes of Asia and North America, with fluctuations in ocean surface temperature in the Arctic ocean, with fluctuations in air temperature in the Far East, and with fluctuations in ocean surface temperature in the Southern hemisphere in the Indian and Pacific oceans, as well as air temperature in southern Australia. It is suggested that there is a global mechanism that regulates long-term climate fluctuations throughout the Earth in the considered interval of 200 years of observations. According to the CMIP5 project, climatic scenarios were built for Kazan until the end of the 21st century.


1975 ◽  
Vol 65 (3) ◽  
pp. 637-650
Author(s):  
E. J. Douze ◽  
G. G. Sorrells

abstract The performance of long-period seismographs is often seriously degraded by atmospheric pressure variation; the problem is particularly severe at periods greater than 20 sec. The pressure variations associated with wind-generated turbulence and acoustic waves are sufficient to deform the surface of the Earth, thus adding to the background noise level recorded by the seismometer. If microbarographs are operated together with the seismograph system, a large percentage of the atmospherically generated noise can be eliminated by the use of optimum filters. The filters are designed based on the least-mean-squares criterion, with the seismograph time trace as the desired output and the microbarographs as the inputs. Single-channel filters, using only one microbarograph, located at the seismometer vault are used to attenuate wind-generated noise. In order to attenuate the noise on windless days from other pressure sources, multichannel filtering is usually necessary and therefore an array of microbarographs is required. The filters used to predict the wind-generated noise are shown to be stable despite the complicated source. The performance of the multichannel varies widely depending on the structure of pressure variations predominating in the atmosphere.


1. Any estimate of the rigidity of the Earth must be based partly on some observations from which a deformation of the Earth’s surface can be inferred, and partly on some hypothesis as to the internal constitution of the Earth. The observations may be concerned with tides of long period, variations of the vertical, variations of latitude, and so on. The hypothesis must relate to the arrangement of the matter as regards density in different parts, and to the state of the parts in respect of solidity, compressibility, and so on. In the simplest hypothesis, the one on which Lord Kelvin’s well-known, estimate was based, the Earth is treated as absolutely incompressible and of uniform density and rigidity. This hypothesis was adopted to simplify the problem, not because it is a true one. No matter is absolutely incompressible, and, the Earth is not a body of uniform density. It cannot be held to be probable that it is a body of uniform rigidity. But when any part of the hypothesis, e. g ., the assumption of uniform density, is discarded, the estimate of rigidity is affected. Different estimates are obtained when different laws of density are assumed. Again, whatever hypothesis we adopt as regards the arrangement of the matter, so long as we consider the Earth to be absolutely incompressible and of uniform rigidity, different estimates of this rigidity are obtained by using observations of different phenomena. Variations of the vertical may give one value, variations of latitude a notably different value. It follows that “the rigidity of the Earth” is not a definite physical constant. But there are two determinate constant numbers related to the methods that have been used for obtaining estimates of the rigidity of the Earth. One of these numbers specifies the amount by which the surface of the Earth yields to forces of the type of the tide-generating attractions of the Sun and Moon. The other number specifies the amount by which the potential of the Earth is altered through the rearrangement of the matter within it when this matter is displaced by the deforming influence of the Sun and Moon. If we adopt the ordinarily-accepted theory of the Figure of the Earth, the so-called theory of “fluid equilibrium,” and if we make the very probable assumption that the physical constants of the matter within the Earth, such as the density or the incompressibility, are nearly uniform over any spherical surface having its centre at the Earth’s centre, we can determine both these numbers without introducing any additional hypothesis as to the law of density or the state of the matter. We shall find, in fact, that observations of variations of latitude lead to a determination of the number related to the inequality of potential, and that, when this number is known, observations of variations of the vertical lead to a determination of the number related to the inequality of figure. [ Note added , December 15, 1908.—This statement needs, perhaps, some additional qualification. It is assumed that, in calculating the two numbers from the two kinds of observations, we may adopt an equilibrium theory of the deformations produced in the Earth by the corresponding forces. If the constitution of the Earth is really such that an equilibrium theory of the effects produced in it by these forces is inadequate, we should expect a marked discordance of phase between the inequality of figure produced and the force producing it. Now Hecker’s observations, cited in § 6 below, show that, in the case of the semidiurnal term in the variation of the vertical due to the lunar deflexion of gravity, the agreement of phase is close. If, however, an equilibrium theory is adequate, as it appears to be, for the semidiurnal corporeal tide, a similar theory must be adequate for the corporeal tides of long period and for the variations of latitude.]


The author had pointed out, in a paper published in the Philosophical Transactions for 1828, on the corrections of the elements of Delambre’s Solar Tables, that the comparison of the corrections of the epochs of the sun and the sun’s perigee, given by the late observations, with the corrections given by the observations of the last century, appears to indicate the existence of some inequality not included in the arguments of those tables. As it was necessary, therefore, to seek for some inequality of long period, he commenced an examination of the mean motions of the planets, with the view of discovering one whose ratio to the mean motion of the earth could be expressed very nearly by a proportion of which the terms are small. The appearances of Venus are found to recur in very nearly the same order every eight years; some multiple, therefore, of the periodic time of Venus is nearly equal to eight years. It is easily seen that this multiple must be thirteen; and consequently eight times the mean motion of Venus is nearly equal to thirteen times the mean motion of the earth. The difference is about one 240th of the mean annual motion of the earth; and it implies the existence of an inequality of which the period is about 240 years. No term has yet been calculated whose period is so long with respect to the periodic time of the planets disturbed. The value of the principal term, calculated from the theory, was given by the author in a postscript to the paper above referred to. In the present memoir he gives an account of the method of calculation, and includes also other terms which are necessarily connected with the principal inequality. The first part treats of the perturbation of the earth’s longitude and radius victor; the second of the perturbation of the earth in latitude; and the third of the perturbations of Venus depending upon the same arguments.


Sign in / Sign up

Export Citation Format

Share Document