Effects of water and nitrogen interaction on net photosynthesis, stomatal conductance, and water-use efficiency in two hybrid poplar clones

1996 ◽  
Vol 97 (3) ◽  
pp. 507-512 ◽  
Author(s):  
Zhijun Liu ◽  
Donald I. Dickmann
Author(s):  
Sasa Orlovic ◽  
Slobodanka Pajevic ◽  
Borivoj Krstic

Photosynthesis, transpiration, water use efficiency (WUE) and biomass production have been investigated in nine black poplar clones (section Aigeiros) in three field experiments. Eastern cottonwood clones (Populus deltoides) had the highest net photosynthesis and water use efficiency. European black poplar clones had the highest transpiration intensity. Correlation analysis showed that net photosynthesis was in a high positive correlation with biomass. Medium negative correlations existed between WUE and net photosynthesis, transpiration and biomass and WUE and biomass. The study showed a pronounced interclonal variability of the physiological and growth characters under study.


Genetika ◽  
2012 ◽  
Vol 44 (2) ◽  
pp. 341-353 ◽  
Author(s):  
Srdjan Stojnic ◽  
Sasa Orlovic ◽  
Andrej Pilipovic ◽  
Dragica Vilotic ◽  
Mirjana Sijacic-Nikolic ◽  
...  

The paper presents the results of investigation of variability of net photosynthesis (A), transpiration (E), stomatal conductance (gs) and water use efficiency (WUE) of three European beech (Fagus sylvatica L.) provenances in the provenance trial established on Fruska Gora Mt. Provenances originate from three localities along a gradient from the north to the south of Europe: Pfalzgrafenweiler (Germany), Grenchen (Swiss) and Valkonya (Hungary). Results indicate that observed parameters were influenced both by environmental conditions of sites and genetic constitution of provenances. On the basis of ANOVA procedure it was observed significant differences among provenances in terms of rate of transpiration (p_0.037) and water use efficiency (p_0.011), while differences regarding net photosynthesis and stomatal conductance were not statistically significant. Canonical discriminant analysis (CDA) was performed in order to estimate multivariate relations among analyzed physiological parameters. Provenances were separated by the first canonical axis (CD1), which described 96.4% of variability. Provenance from the driest site (Valkonya) showed the highest water use efficiency, indicating on high potential for afforestation programmes in more arid areas.


2016 ◽  
Vol 44 (1) ◽  
pp. 250-256 ◽  
Author(s):  
Bianca do Carmo SILVA ◽  
Pêola Reis de SOUZA ◽  
Daihany Moraes CALLEGARI ◽  
Vanessa Ferreira ALVES ◽  
Allan Klynger da Silva LOBATO ◽  
...  

Boron (B) is a very important nutrient required by forest plants; when supplied in adequate amounts, plants can ameliorate the negative effects of abiotic stresses. The objective of this study was to (i) investigate gas exchange, (ii) measure oxidant and antioxidant compounds, and (iii) respond how B supply acts on tolerance mechanism to water deficit in young Schizolobium parahyba plants. The experiment employed a factorial that was entirely randomised, with two boron levels (25 and 250 µmol L-1, simulating conditions of sufficient B and high B, respectively) and two water conditions (control and water deficit). Water deficit induced negative modifications on net photosynthetic rate, stomatal conductance and water use efficiency, while B high promoted intensification of the effects on stomatal conductance and water use efficiency. Hydrogen peroxide and electrolyte leakage of both tissues suffered non-significant increases after B high and when applied water deficit. Ascorbate levels presented increases after water deficit and B high to leaf and root. Our results suggested that the tolerance mechanism to water deficit in young Schizolobium parahyba plants is coupled to increases in total glutathione and ascorbate aiming to control the overproduction of hydrogen peroxide and alleviates the negative consequences on electrolyte leakage and gas exchange. In relation to B supply, this study proved that sufficient level promoted better responses under control and water deficit conditions.


2021 ◽  
Vol 9 (11) ◽  
pp. 2398
Author(s):  
Ibraheem Olamide Olasupo ◽  
Qiuju Liang ◽  
Chunyi Zhang ◽  
Md Shariful Islam ◽  
Yansu Li ◽  
...  

Agronomic biofortification of horticultural crops using plant growth-promoting rhizobacteria (PGPR) under crop residue incorporation systems remains largely underexploited. Bacillus subtilis (B1), Bacillus laterosporus (B2), or Bacillus amyloliquefaciens (B3) was inoculated on soil containing chili residue, while chili residue without PGPR (NP) served as the control. Two hybrid long cayenne peppers, succeeding a leaf mustard crop were used in the intensive cultivation study. Net photosynthesis, leaf stomatal conductance, transpiration rate, photosynthetic water use efficiency, shoot and root biomass, and fruit yield were evaluated. Derivatives of folate, minerals, and nitrate contents in the pepper fruits were also assessed. B1 elicited higher net photosynthesis and photosynthetic water use efficiency, while B2 and B3 had higher transpiration rates than B1 and NP. B1 and B3 resulted in 27–36% increase in pepper fruit yield compared to other treatments, whereas B3 produced 24–27.5% and 21.9–27.2% higher 5-methyltetrahydrofolate and total folate contents, respectively, compared to B1 and NP. However, chili residue without PGPR inoculation improved fruit calcium, magnesium, and potassium contents than the inoculated treatments. ‘Xin Xian La 8 F1’ cultivar had higher yield and plant biomass, fruit potassium, total soluble solids, and total folate contents compared to ‘La Gao F1.’ Agronomic biofortification through the synergy of Bacillus amyloliquefaciens and chili residue produced better yield and folate contents with a trade-off in the mineral contents of the greenhouse-grown long cayenne pepper.


2018 ◽  
Vol 36 (1) ◽  
pp. 7-13
Author(s):  
Melissa C. Smith ◽  
Richard N. Mack

Abstract Suitable plant water dynamics and the ability to withstand periods of low moisture input facilitate plant establishment in seasonally arid regions. Temperate bamboos are a major constituent of mixed evergreen and deciduous forests throughout temperate East Asia but play only an incidental role in North American forests and are altogether absent in the Pacific Northwest forest. Many bamboo species are classified as mesic or riparian, but none are considered drought tolerant. To assess their ability to withstand low water, we subjected five Asian temperate and one North American temperate bamboo species to three irrigation treatments: 100%, 50%, and 10% replacement of water lost through evapotranspiration. Plants were irrigated every four days over a 31-day period. Plant response to treatments was measured with stomatal conductance, leaf xylem water potentials, and intrinsic water use efficiency (iWUE). Pleioblastus distichus and Pseudosasa japonica showed significant reductions in conductance between high and low irrigation treatments. Sasa palmata had significantly lower stomatal conductance in all treatments. Pleioblastus chino displayed significantly higher iWUE in the mid irrigation treatment and Arunindaria gigantea displayed significantly lower iWUE than P. chino and S. palmata in the low irrigation treatment. The Asian bamboo species examined here tolerate low water availability and readily acclimate to different soil moisture conditions. Index words: Temperate bamboos, irrigation response, stomatal conductance, intrinsic water use efficiency. Species used in this study: Giant Cane [Arundinaria gigantea (Walt.) Muhl.]; Pleioblastus chino (Franchet & Savatier) Makino; Pleioblastus distichus (Mitford) Nakai; Pseudosasa japonica (Makino); Sasa palmata (Bean) Nakai.


2021 ◽  
Author(s):  
Fasih Ullah Haider ◽  
Muhammad Farooq ◽  
Muhammad Naveed ◽  
Sardar Alam Cheema ◽  
Noor ul Ain ◽  
...  

Abstract The synergistic effects of biochar and microorganisms on the adsorption of Cd and on cereal plant physiology remained unclear. Therefore, this experiment was performed to evaluate the combined effects of biochar pyrolyzed from (maize-straw (BC1), cow-manure (BC2), and poultry-manure (BC3), and microorganisms including (T. harzianum L. and B. subtilis L.), to evaluate, how incorporation of biochar positively influences microorganisms growth and nutrients uptake in plant, and how it mitigates under various Cd-stress levels (0, 10, and 30ppm). Cd2 (30 ppm) had the highest reduction in the intercellular CO2, SPAD value, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate, which were 22.36, 34.50, 40.45, 20.66, 29.07, and 22.41% respectively lower than control Cd0 (0 ppm). Sole application BC, resulted in enhanced intercellular CO2, SPAD value, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate were recorded in BC2, which were 7.27, 20.54, 23.80, 5.96, 13.37, and 13.50% respectively greater as compared to control and decreased the Cd-concentration in root and shoot of maize by 34.07 and 32.53%, respectively as compared to control. Similarly, among sole microorganism’s inoculation, minimized the Cd-concentration in shoot, root, and soil by 23.77, 20.15, and 10.35% respectively than control. These results suggested that integrated application of cow manure biochar BC2 and inoculation of microorganisms MI3 as soil amendments had synergistic effects in improving the adsorption of nutrients and decreasing the Cd-uptake in maize, and enhancing the physiology of plant grown in Cd-polluted soils as opposed to using either biochar or inoculating microorganisms alone.


Author(s):  
Juan D. Franco‐Navarro ◽  
Miguel A. Rosales ◽  
Paloma Cubero‐Font ◽  
Purificación Calvo ◽  
Rosario Álvarez ◽  
...  

2020 ◽  
Vol 8 (10) ◽  
pp. 1565 ◽  
Author(s):  
Abraham Mulu Oljira ◽  
Tabassum Hussain ◽  
Tatoba R. Waghmode ◽  
Huicheng Zhao ◽  
Hongyong Sun ◽  
...  

Soil salinity is one of the most important abiotic stresses limiting plant growth and productivity. The breeding of salt-tolerant wheat cultivars has substantially relieved the adverse effects of salt stress. Complementing these cultivars with growth-promoting microbes has the potential to stimulate and further enhance their salt tolerance. In this study, two fungal isolates, Th4 and Th6, and one bacterial isolate, C7, were isolated. The phylogenetic analyses suggested that these isolates were closely related to Trichoderma yunnanense, Trichoderma afroharzianum, and Bacillus licheniformis, respectively. These isolates produced indole-3-acetic acid (IAA) under salt stress (200 mM). The abilities of these isolates to enhance salt tolerance were investigated by seed coatings on salt-sensitive and salt-tolerant wheat cultivars. Salt stress (S), cultivar (C), and microbial treatment (M) significantly affected water use efficiency. The interaction effect of M x S significantly correlated with all photosynthetic parameters investigated. Treatments with Trichoderma isolates enhanced net photosynthesis, water use efficiency and biomass production. Principal component analysis revealed that the influences of microbial isolates on the photosynthetic parameters of the different wheat cultivars differed substantially. This study illustrated that Trichoderma isolates enhance the growth of wheat under salt stress and demonstrated the potential of using these isolates as plant biostimulants.


Sign in / Sign up

Export Citation Format

Share Document