poplar clones
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 37)

H-INDEX

34
(FIVE YEARS 4)

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 304
Author(s):  
Ivo Paulo ◽  
Luis Costa ◽  
Abel Rodrigues ◽  
Sofia Orišková ◽  
Sandro Matos ◽  
...  

Liquefaction of biomass delivers a liquid bio-oil with relevant chemical and energetic applications. In this study we coupled it with short rotation coppice (SRC) intensively managed poplar cultivations aimed at biomass production while safeguarding environmental principles of soil quality and biodiversity. We carried out acid-catalyzed liquefaction, at 160 °C and atmospheric pressure, with eight poplar clones from SRC cultivations. The bio-oil yields were high, ranging between 70.7 and 81.5%. Average gains of bio-oil, by comparison of raw biomasses, in elementary carbon and hydrogen and high heating, were 25.6, 67, and 74%, respectively. Loss of oxygen and O/C ratios averaged 38 and 51%, respectively. Amounts of elementary carbon, oxygen, and hydrogen in bio-oil were 65, 26, and 8.7%, and HHV averaged 30.5 MJkg−1. Correlation analysis showed the interrelation between elementary carbon with HHV in bio-oil or with oxygen loss. Overall, from 55 correlations, 21 significant and high correlations among a set of 11 variables were found. Among the most relevant ones, the percentage of elementary carbon presented five significant correlations with the percentage of O (−0.980), percentage of C gain (0.902), percentage of O loss (0.973), HHV gain (0.917), and O/C loss (0.943). The amount of carbon is directly correlated with the amount of oxygen, conversely, the decrease in oxygen content increases the elementary carbon and hydrogen concentration, which leads to an improvement in HHV. HHV gain showed a strong positive dependence on the percentage of C (0.917) and percentage of C gain (0.943), while the elementary oxygen (−0.885) and its percentage of O loss (0.978) adversely affect the HHV gain. Consequently, the O/C loss (0.970) increases the HHV positively. van Krevelen’s analysis indicated that bio-oils are chemically compatible with liquid fossil fuels. FTIR-ATR evidenced the presence of derivatives of depolymerization of lignin and cellulose in raw biomasses in bio-oil. TGA/DTG confirmed the bio-oil burning aptitude by the high average 53% mass loss of volatiles associated with lowered peaking decomposition temperatures by 100 °C than raw biomasses. Overall, this research shows the potential of bio-oil from liquefaction of SRC biomasses for the contribution of renewable energy and chemical deliverables, and thereby, to a greener global economy.


Trees ◽  
2021 ◽  
Author(s):  
Paul Grünhofer ◽  
Lena Herzig ◽  
Lukas Schreiber

Abstract Key message We identified two poplar clones of the same species as highly comparable, yet clones of two further species of the same genus to be distinctly different regarding multiple morphological and ecophysiological traits. Abstract Leaf morphology, wax composition, and residual (cuticular) transpiration of four poplar clones (two clones of the hybrid species P. × canescens, P. trichocarpa, and P. euphratica) were monitored from the beginning to end of the growing season 2020. A pronounced epicuticular wax coverage was found only with P. euphratica. As the most prominent substance classes of cuticular wax primary alcohols, alkanes and esters were identified with P. × canescens and P. trichocarpa, whereas esters and alkanes were completely lacking in P. euphratica. Wax amounts were slightly decreasing during the season and significantly lower wax amounts were found for newly formed leaves in summer compared to leaves of the same age formed in spring. Residual (cuticular) transpiration was about five to tenfold lower for P. × canescens compared with the two other poplar species. Interestingly, with three of the four investigated species, newly formed leaves in summer had lower wax coverages and lower rates of residual (cuticular) transpiration compared to leaves of exactly the same age formed in spring. Our findings were especially surprising with P. euphratica, representing the only one of the four investigated poplar species naturally growing in very dry and hot climates in Central Asia. Instead of developing very low rates of residual (cuticular) transpiration, it seems to be of major advantage for P. euphratica to develop a pronounced epicuticular wax bloom efficiently reflecting light.


Euphytica ◽  
2021 ◽  
Vol 217 (8) ◽  
Author(s):  
Luping Jiang ◽  
Xiaona Pei ◽  
Yanbo Hu ◽  
Vincent L. Chiang ◽  
Xiyang Zhao

Author(s):  
Yamei Liu ◽  
Liang Zhou ◽  
Ying Guan ◽  
Jianjun Hu ◽  
Zicheng Zhao ◽  
...  

Wood properties are crucial for the development and application of poplar clones. Here, the effects of clone and age on anatomical and chemical properties were analyzed in eight poplar clones (clone 50, Zhonglin46, 108, 36, N179, Danhong, Sangju, and Nanyang) from Henan province, China. The results showed that the effects of clone and age were both significant for these wood properties. Eight clones were grouped into three clusters according to their annual ring width, fiber quality, and chemical properties. For some properties including annual ring width, fiber length, and microfibril angle, all clones displayed the same radial variation trends. Whereas, for other ones, such as holocellulose content, the radial variation trends were different depending on clones. The culmination of the mean annual increment corresponded to the turning ages of wood properties such as annual ring width in eight clones and holocellulose content in partial clones except for fiber length, microfibril angle, and vessel length. The rotation age of the poplar clones could be determined as 8-9 years based on the fiber quality and chemical components. These results indicated strong genetic and age control of the wood properties and highlighted the rich source of variation for poplar clone selection.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3016
Author(s):  
Marzena Niemczyk ◽  
Margalita Bachilava ◽  
Marek Wróbel ◽  
Marcin Jewiarz ◽  
Giorgi Kavtaradze ◽  
...  

Georgian forests are very valuable natural resources, but due to the lack of affordable alternatives to firewood, people are forced to use forest resources illegally and unsustainably. The aim of this study was to determine the productivity and biomass properties of four poplar clones from Aigeiros and Tacamahaca and one control clone, considering their wood and bark characteristics and their proportion in the stems. Short-rotation woody crops with these clones represent a potential source of commercial fuelwood production in Georgia as an alternative to natural forests. These tree characteristics were evaluated after three years of growth. The survival of the clones was generally high. No significant differences in biomass production (dry matter, DM) were found among the four clones tested (DM of approximately 4 Mg ha−1 yr−1), while the control clone achieved significantly lower values for DM. The biomass specific density was exceptionally high, at 481–588 kg m−3, which was a result of the high proportion of bark mass in the stem (23.3–37.7%), with a density almost twice that of wood. On the other hand, the tested clones had a very high ash content in the biomass (2.6–4.5%), which negatively affected their energy potential expressed as a lower heating value (17,642–17,849 J g−1). Our preliminary results indicated that both the quantity and quality of biomass are important factors to justify the investment in an intensive poplar culture. The four clones should be further considered for commercial biomass production and tested at different sites in Georgia to evaluate the genotype-by-environment interactions and identify the site conditions required to justify such an investment.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 636
Author(s):  
Vladislava Galović ◽  
Marko Kebert ◽  
Boris M. Popović ◽  
Branislav Kovačević ◽  
Verica Vasić ◽  
...  

Halomorphic soils cover a significant area in the Vojvodina region and represent ecological and economic challenges for agricultural and forestry sectors. In this study, four economically important Serbian poplar clones were compared according to their biochemical and transcriptomic responses towards mild and severe salt stress to select the most tolerant clones for afforestation of halomorphic soils. Three prospective clones of Populus deltoides (Bora-B229, Antonije-182/81 and PE19/66) and one of hybrid genetic background P. nigraxP. deltoides, e.g., P. x euramericana (Pannonia-M1) were hydroponically subjected to NaCl as a salt stress agent in a concentration range from 150 mM to 450 mM. Plant responses were measured at different time periods in the leaves. Biochemical response of poplar clones to salt stress was estimated by tracking several parameters such as different radical scavenging capacities (estimated by DPPH, FRAP and ABTS assays), accumulation of total phenolic content and flavonoids. Furthermore, accumulation of two osmolytes, glycine betaine and proline, were quantified. The genetic difference of those clones has been already shown by single nucleotide polymorphisms (SNPs) but this paper emphasized their differences regarding biochemical and transcriptomic salt stress responses. Five candidate genes, two putative poplar homologues of GRAS family TFs (PtGRAS17 and PtGRAS16), PtDREB2 of DREB family TFs and two abiotic stress-inducible genes (PtP5SC1, PtSOS1), were examined for their expression profiles. Results show that most salt stress-responsive genes were induced in clones M1 and PE19/66, thus showing they can tolerate salt environments with high concentrations and could be efficient in phytoremediation of salt environments. Clone M1 and PE19/66 has ABA-dependent mechanisms expressing the PtP5CS1 gene while clone 182/81 could regulate the expression of the same gene by ABA-independent pathway. To improve salt tolerance in poplar, two putative GRAS/SCL TFs and PtDREB2 gene seem to be promising candidates for genetic engineering of salt-tolerant poplar clones.


Author(s):  
Martina Bremer ◽  
Javane Oktaee ◽  
Daniela Einer ◽  
Steffen Fischer ◽  
André Wagenführ

AbstractBark on trees protects the plant against environmentally adverse conditions as well as fungi and insect attacks. There are different chemical substances, mostly in the outer bark of trees, which can stop fungi from developing. Bark as a by-product of wood plantations is available in high quantity and can serve as an excellent source for the production of eco-fungicides. In the presented article, bark of various poplar clones from two short-rotation coppices (SRC) in Poland and Germany was examined to determine the chemical composition, the possible extraction of potential fungicides (terpenes, aromatic and phenolic substances), and influence of their extracts on slowing the growth of mold fungi. It was proved that the content of the fungicidal substances depends strongly on the clone type. Two methods of extraction—Soxhlet and batch—were compared to obtain fungicidal extracts. Fungicidal substances were found in extracts gained with both approaches. Triterpenes, fatty acids, aldehydes, and alcohols were primarily the active fungicides in the Soxhlet extracts, whereas phenolic substances act as fungicides in the batch extracts.


2021 ◽  
Vol 30 (1) ◽  
pp. eSC01
Author(s):  
Paulo Cañete-Salinas ◽  
Francisco Zamudio ◽  
Marco Yañez ◽  
Héctor Valdés-Gómez ◽  
Cristian Espinosa ◽  
...  

Aim of study: The productivity of poplar plantations in Mediterranean climates might be reduced due to lower precipitations in a climate change scenario. Therefore, understanding the water consumption in these plantations is essential for their management. The objective of this study was to estimate water consumption and preliminary crop coefficients (kc) of two universally used poplar clones (Populus x Canadensis ‘I-214’ and ‘I-488’).Area of study: Central Chile (36º 05 'LS; 72º 47' LW; 470 m.a.s.l.).Materials and methods: Commercial stands of poplar clones established in 2009 and 2010 at low density (6×6 m) were used to experiment during the 2016-2017 growing season. In each of them, water balance was measuring, by determining evaporation using micro lysimeters and transpiration using the sap flow. Additionally, the water status and the leaf area index (LAI) were measured to understand the behaviour of both clones.Main results: Although the water supplied to both clones was the same, the transpiration (T) was higher for ‘I-488’ than ‘I-214’, at those moments in which the evapotranspiration (ETr) and the vapour pressure deficit (VPD) was higher. On the other hand, differences were observed in plant water status, ‘I-488’ had more negative xilematic water potential (Ψx) compared to ‘I-214’. In turn, I-214 proved to have a higher Leaf Area Index (LAI) than I-488 and grew more during the season, refuting its greater efficiency.Research highlights: These results allow characterizing the water behaviour of both clones in Mediterranean climate condition, but it is necessary to extend the study to more seasons and different age ranges.Keywords: Crop coefficient; water consumption; water balance; poplar.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 206
Author(s):  
Ru Jia ◽  
Yurong Wang ◽  
Rui Wang ◽  
Xu Chen

In order to understand the physical and mechanical properties of poplar clones, and explore a method for their quick evaluation, the air dry density, modulus of rupture (MOR), modulus of elasticity (MOE), and compressive strength parallel to grains of three new bred poplar clones were explored and the prediction models with the highest accuracy were established by near infrared spectroscopy (NIRs). Clone 50 (Populus deltoides CL. ‘55/65′) had the highest air dry density, MOR, MOE, and compressive strength parallel to grains in the three clones. For clone 50 and 108 (Populus euramericana cv. ‘Guariento’), the mechanical properties of sapwood were better than those of heartwood, and the sapwood of clone 50 also had a better air dry density than that of heartwood. There were significant positive correlations between the air dry density and mechanical properties, with correlation coefficients above 0.68. Prediction models with better effects could be obtained by using information on the cross section for the air dry density and mechanical properties. First derivative+ Savitzky–Golay (S-G) smoothing methods were employed for the air dry density and MOR, and multiple scattering correction (MSC)+ S-G smoothing methods were used when establishing prediction models of MOE and compressive strength parallel to grains.


Sign in / Sign up

Export Citation Format

Share Document