Sucrose metabolism in spring and winter wheat in response to high irradiance, cold stress and cold acclimation

2000 ◽  
Vol 108 (3) ◽  
pp. 270-278 ◽  
Author(s):  
Leonid V. Savitch ◽  
Tracy Harney ◽  
Norman P. A. Huner
1992 ◽  
Vol 56 (11) ◽  
pp. 1715-1720 ◽  
Author(s):  
Yusuke Matsuda ◽  
Tohru Okuda ◽  
Akira Yamanaka ◽  
Shonosuke Sagisaka

1995 ◽  
Vol 9 (4) ◽  
pp. 20-24 ◽  
Author(s):  
S. Chakarov ◽  
P. Vassilev ◽  
P. Stoilov ◽  
A. Angelova
Keyword(s):  

1987 ◽  
Vol 14 (3) ◽  
pp. 277 ◽  
Author(s):  
LT Evans

Experiments in the Canberra phytotron with several European winter wheat varieties, especially cv. Templar, have shown that their need for vernalisation at low temperature can be replaced entirely by growth in short days at 21/16°C for the same period. In fact, although wheat is usually classified as a long day plant, inflorescence initiation at 21/16°C in unvernalised plants was twice as rapid in 8 h photoperiods as in 16 h ones. Short day induction was fastest in photoperiods of less than 12 h and was relatively insensitive to irradiance. Inflorescence development following initiation was faster the longer the photoperiod. At high irradiance, anthesis eventually occurred in 8 h days, but not at lower irradiance. These wheats are therefore short-long day plants, and may appear to be indifferent to daylength if only their time to anthesis is observed. Although short days can replace low temperatures, there are several important differences in their modes of action, and short day induction is better not referred to as short day vernalisation. Vernalisation of developing grains in the ear was more effective in long days.


2020 ◽  
Author(s):  
Kensuke Kimura ◽  
Daisuke Yasutake ◽  
Takahiro Oki ◽  
Koichiro Yoshida ◽  
Masaharu Kitano

Abstract Background and Aims Most perennial plants memorize cold stress for a certain period and retrieve the memories for cold acclimation and deacclimation, which leads to seasonal changes in cold-hardiness. Therefore, a model for evaluating cold stress memories is required for predicting cold-hardiness and for future frost risk assessments under warming climates. In this study we develop a new dynamic model of cold-hardiness by introducing a function imitating past temperature memory in the processes of cold acclimation and deacclimation. Methods We formulated the past temperature memory for plants using thermal time weighted by a forgetting function, and thereby proposed a dynamic model of cold-hardiness. We used the buds of tea plants (Camellia sinensis) from two cultivars, ‘Yabukita’ and ‘Yutakamidori’, to calibrate and validate this model based on 10 years of observed cold-hardiness data. Key Results The model captured more than 90 % of the observed variation in cold-hardiness and predicted accurate values for both cultivars, with root mean square errors of ~1.0 °C. The optimized forgetting function indicated that the tea buds memorized both short-term (recent days) and long-term (previous months) temperatures. The memories can drive short-term processes such as increasing/decreasing the content of carbohydrates, proteins and antioxidants in the buds, as well as long-term processes such as determining the bud phenological stage, both of which vary with cold-hardiness. Conclusions The use of a forgetting function is an effective means of understanding temperature memories in plants and will aid in developing reliable predictions of cold-hardiness for various plant species under global climate warming.


BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Bin Zhang ◽  
Lilin Zhao ◽  
Jing Ning ◽  
Jacob D. Wickham ◽  
Haokai Tian ◽  
...  

Abstract Background Survival to cold stress in insects living in temperate environments requires the deployment of strategies that lead to physiological changes involved in freeze tolerance or freeze avoidance. These strategies may consist of, for instance, the induction of metabolic depression, accumulation of cryoprotectants, or the production of antifreeze proteins, however, little is known about the way such mechanisms are regulated and the signals involved in their activation. Ascarosides are signaling molecules usually known to regulate nematode behavior and development, whose expression was recently found to relate to thermal plasticity in the Japanese pine sawyer beetle Monochamus alternatus. Accumulating evidence also points to miRNAs as another class of regulators differentially expressed in response to cold stress, which are predicted to target genes involved in cold adaptation of insects. Here, we demonstrate a novel pathway involved in insect cold acclimation, through miRNA-mediated regulation of ascaroside function. Results We initially discovered that experimental cold acclimation can enhance the beetle’s cold hardiness. Through screening and functional verification, we found miR-31-5p, upregulated under cold stress, significantly contributes to this enhancement. Mechanistically, miR-31-5p promotes production of an ascaroside (asc-C9) in the beetle by negatively targeting the rate-limiting enzyme, acyl-CoA oxidase in peroxisomal β-oxidation cycles. Feeding experiments with synthetic asc-C9 suggests it may serve as a signal to promote cold acclimation through metabolic depression and accumulation of cryoprotectants with specific gene expression patterns. Conclusions Our results point to important roles of miRNA-mediated regulation of ascaroside function in insect cold adaptation. This enhanced cold tolerance may allow higher survival of M. alternatus in winter and be pivotal in shaping its wide distribution range, greatly expanding the threat of pine wilt disease, and thus can also inspire the development of ascaroside-based pest management strategies.


Sign in / Sign up

Export Citation Format

Share Document