Low vapour pressure deficit reduces the beneficial effect of elevated CO2 on growth of N2 -fixing alfalfa plants

2002 ◽  
Vol 116 (4) ◽  
pp. 497-502 ◽  
Author(s):  
Iñaki De Luis ◽  
Juan José Irigoyen ◽  
Manuel Sánchez-Díaz
1998 ◽  
Vol 25 (3) ◽  
pp. 287 ◽  
Author(s):  
Saman P. Seneweera ◽  
Oula Ghannoum ◽  
Jann Conroy

The hypothesis that shoot growth responses of C4 grasses to elevated CO2 are dependent on shoot water relations was tested using a C4 grass, Panicum coloratum (NAD-ME subtype). Plants were grown for 35 days at CO2 concentrations of 350 or 1000 µL CO2 L-1. Shoot water relations were altered by growing plants in soil which was brought daily to 65, 80 or 100% field capacity (FC) and by maintaining the vapour pressure deficit (VPD) at 0.9 or 2.1 kPa. At 350 µL CO2 L-1, high VPD and lower soil water content depressed shoot dry mass, which declined in parallel at each VPD with decreasing soil water content. The growth depression at high VPD was associated with increased shoot transpiration, whereas at low soil water, leaf water potential was reduced. Elevated CO2 ameliorated the impact of both stresses by decreasing transpiration rates and raising leaf water potential. Consequently, high CO2 approximately doubled shoot mass and leaf length at a VPD of 2.1 kPa and soil water contents of 65 and 80% FC but had no effect on unstressed plants. Water use efficiency was enhanced by elevated CO2 under conditions of stress but this was primarily due to increases in shoot mass. High CO2 had a greater effect on leaf growth parameters than on stem mass. Elevated CO2 increased specific leaf area and leaf area ratio, the latter at high VPD only. We conclude that high CO2 increases shoot growth of C4 grasses by ameliorating the effects of stress induced by either high VPD or low soil moisture. Since these factors limit growth of field-grown C4 grasses, it is likely that their biomass will be enhanced by rising atmospheric CO2 concentrations.


2004 ◽  
Vol 31 (12) ◽  
pp. 1137 ◽  
Author(s):  
Emiliano Pegoraro ◽  
Ana Rey ◽  
Edward G. Bobich ◽  
Greg Barron-Gafford ◽  
Katherine Ann Grieve ◽  
...  

To further our understanding of the influence of global climate change on isoprene production we studied the effect of elevated [CO2] and vapour pressure deficit (VPD) on isoprene emission rates from leaves of Populus deltoides Bartr. during drought stress. Trees, grown inside three large bays with atmospheres containing 430, 800, or 1200 μmol mol–1 CO2 at the Biosphere 2 facility, were subjected to a period of drought during which VPD was manipulated, switching between low VPD (approximately 1 kPa) and high VPD (approximately 3 kPa) for several days. When trees were not water-stressed, elevated [CO2] inhibited isoprene emission and stimulated photosynthesis. Isoprene emission was less responsive to drought than photosynthesis. As water-stress increased, the inhibition of isoprene emission disappeared, probably as a result of stomatal closure and the resulting decreases in intercellular [CO2] (Ci). This assumption was supported by increased isoprene emission under high VPD. Drought and high VPD dramatically increased the proportion of assimilated carbon lost as isoprene. When measured at the same [CO2], leaves from trees grown at ambient [CO2] always had higher isoprene emission rates than the leaves of trees grown at elevated [CO2], demonstrating that CO2 inhibition is a long-term effect.


2005 ◽  
Vol 48 (5) ◽  
pp. 815-824 ◽  
Author(s):  
Marcelo Schramm Mielke ◽  
Alex-Alan Furtado de Almeida ◽  
Fábio Pinto Gomes

Measurements of leaf gas exchange at different photosynthetic photon flux density (PPFD) levels were conducted in order to compare the photosynthetic traits of five neotropical rainforest tree species, with a special emphasis on empirical mathematical models to estimate the light response curve parameters incorporating the effects of leaf-to-air vapour pressure deficit (D) on the saturated photosynthetic rate (Amax). All empirical mathematical models seemed to provide a good estimation of the light response parameters. Comparisons of the leaf photosynthetic traits between different species needed to select an appropriate model and indicated the microenvironmental conditions when the data were collected. When the vapour pressure deficit inside the chamber was not controlled, the incorporation of linear or exponencial functions that explained the effects of D on leaf gas exchange, was a very good method to enhance the performance of the models.


2019 ◽  
Vol 12 ◽  
pp. 01011
Author(s):  
H.R. Schultz

The predicted developments in climate are region-specific and adaptation can only be successful considering the regional characteristics with its diverse technical, environmental, economic and social implications. One of the key concerns for many regions is the availability of water through precipitation, the distribution of precipitation throughout the year, and possible changes in evaporative demand of the atmosphere and thus water use. From rising temperatures it is mostly assumed that water holding capacity of the atmosphere will increase in the future as a function of the Clausius-Clapeyron law, which predicts an increase in the saturation vapour pressure of the atmosphere of 6–7% per degree Celsius. As a consequence, a simultaneous increase in potential evapotranspiration (ETp, the amount of water that could potentially be evaporated from soils and transpired by plants due to changes in climatic factors such as temperature, vapour pressure deficit, radiation and wind speed) is assumed in many cases, which would alter soil and plant water relations. However, the same underlying principles also predict an increase in precipitation by 1–2% per degree warming. Additionally, model predictions for many regions forecast altered precipitation patterns and thus in combination with the possibility of increased ETp, farmers around the world fear an increase in the likelyhood of water deficit and a reduction in the availability of water for irrigation. Contrary to expectations, there have been reports on a reduction in evaporative demand worldwide despite increasing temperatures. In many cases this has been related to a decrease in solar radiation observed for many areas on earth including wine growing regions in Europe until the beginning of the 80th (global dimming) of the last century. However, since then, solar radiation has increased again, but ETp did not always follow and a worldwide decrease in wind speed and pan evaporation has been observed. In order to evaluate different grape growing regions with respect to observed changes on precipitation patterns and ETp, the data of seven wine-growing areas in five countries in the Northern and Southern hemisphere across a large climatic trans-sect were analyzed (Rheingau, Germany, Burgundy, Rhone Valley, France, Napa Valley, USA, Adelaide Hills, Tasmania, Australia, Marlborough, New Zealand) were analyzed. Precipitation patterns differed vastly between locations and showed very different trends over observation periods ranging from 23 to 60 years. The ETp has increased continuously in only two of the seven wine growing areas (Rheingau and Marlborough). In most other areas, ETp has been stable during winter and summer for at least 22 years (Rhone Valley, Napa Valley, Tasmania), sometimes much longer (45 years Adelaide Hills), and has been declining in Burgundy after a period of strong increase for the last 13 years. The potential underlying factors are discussed in relation to observed shifts in precipitation patterns.


Sign in / Sign up

Export Citation Format

Share Document