Modelling the effect of air vapour pressure deficit on leaf photosynthesis of greenhouse tomatoes: The importance of leaf conductance to CO2

1995 ◽  
Vol 70 (3) ◽  
pp. 423-432 ◽  
Author(s):  
R. Romero-Aranda ◽  
J. J. Longuenesse
2000 ◽  
Vol 51 (7) ◽  
pp. 839 ◽  
Author(s):  
Mark R. Gibberd ◽  
Neil C. Turner ◽  
Brian R. Loveys

Two carrot (Daucus carota L.) genotypes (Nantes and Imperator) were grown in the field on a coarse-textured, sandy soil. Experiments were conducted over 2 consecutive seasons, one providing cool growing conditions and the other much warmer growing conditions during which the vapour pressure deficit was up to 2-fold higher than in the first season. Changes in growth, soil water content, and environmental conditions were monitored for both seasons, and diurnal measurements of leaf water potential and leaf photosynthesis were taken near maturity. Frequent irrigation maintained bulk soil water content above, or near, field capacity, with the sum of rainfall and irrigation exceeding potential evaporation by 1.4- and 1.3-fold during the cool and warm seasons, respectively. Even under such well-watered conditions, a large diurnal variation in leaf water potential (1200 and 1800 kPa for the cool- and warm-season crops, respectively) was recorded. During the cool season, withholding irrigation for up to 60 h resulted in further reductions in midday leaf water potential. However, there was no effect of withholding irrigation on leaf water potential during the warm season. During both seasons, leaf photosynthetic rate of well-watered plants peaked at around 20 µmol/m2.s in the early morning (0900 hours) and then decreased throughout the day, with the magnitude of the decline associated with the prevailing vapour pressure deficit. Under well-watered conditions, leaf water potential and photosynthesis were both negatively correlated with vapour pressure deficit, for both genotypes. Leaf water potential and photosynthesis were positively correlated with each other and we conclude that a high hydraulic resistance in the plant or soil results in a vapour pressure deficit-induced reduction in leaf water potential, which in turn reduces the rate of leaf photosynthesis.


1998 ◽  
Vol 25 (3) ◽  
pp. 287 ◽  
Author(s):  
Saman P. Seneweera ◽  
Oula Ghannoum ◽  
Jann Conroy

The hypothesis that shoot growth responses of C4 grasses to elevated CO2 are dependent on shoot water relations was tested using a C4 grass, Panicum coloratum (NAD-ME subtype). Plants were grown for 35 days at CO2 concentrations of 350 or 1000 µL CO2 L-1. Shoot water relations were altered by growing plants in soil which was brought daily to 65, 80 or 100% field capacity (FC) and by maintaining the vapour pressure deficit (VPD) at 0.9 or 2.1 kPa. At 350 µL CO2 L-1, high VPD and lower soil water content depressed shoot dry mass, which declined in parallel at each VPD with decreasing soil water content. The growth depression at high VPD was associated with increased shoot transpiration, whereas at low soil water, leaf water potential was reduced. Elevated CO2 ameliorated the impact of both stresses by decreasing transpiration rates and raising leaf water potential. Consequently, high CO2 approximately doubled shoot mass and leaf length at a VPD of 2.1 kPa and soil water contents of 65 and 80% FC but had no effect on unstressed plants. Water use efficiency was enhanced by elevated CO2 under conditions of stress but this was primarily due to increases in shoot mass. High CO2 had a greater effect on leaf growth parameters than on stem mass. Elevated CO2 increased specific leaf area and leaf area ratio, the latter at high VPD only. We conclude that high CO2 increases shoot growth of C4 grasses by ameliorating the effects of stress induced by either high VPD or low soil moisture. Since these factors limit growth of field-grown C4 grasses, it is likely that their biomass will be enhanced by rising atmospheric CO2 concentrations.


2004 ◽  
Vol 31 (12) ◽  
pp. 1195 ◽  
Author(s):  
Steffen M. Noe ◽  
Christoph Giersch

Modelling the diurnal course of photosynthesis in oak leaves (Quercus robur L.) requires appropriate description of the dynamics of leaf photosynthesis of which diurnal variations in leaf conductance and in CO2 assimilation are essential components. We propose and analyse a simple photosynthesis model with three variables: leaf conductance (gs), the CO2 partial pressure inside the leaf (pi), and a pool of Calvin cycle intermediates (aps). The environmental factors light (I) and vapour pressure deficit (VPD) are used to formulate a target function G(I, VPD) from which the actual leaf conductance is calculated. Using this gs value and a CO2 consumption term representing CO2 fixation, a differential equation for pi is derived. Carboxylation corresponds to the sink term of the pi pool and is assumed to be feedback-inhibited by aps. This simple model is shown to produce reasonable to excellent fits to data on the diurnal time courses of photosythesis, pi and gs sampled for oak leaves.


2005 ◽  
Vol 48 (5) ◽  
pp. 815-824 ◽  
Author(s):  
Marcelo Schramm Mielke ◽  
Alex-Alan Furtado de Almeida ◽  
Fábio Pinto Gomes

Measurements of leaf gas exchange at different photosynthetic photon flux density (PPFD) levels were conducted in order to compare the photosynthetic traits of five neotropical rainforest tree species, with a special emphasis on empirical mathematical models to estimate the light response curve parameters incorporating the effects of leaf-to-air vapour pressure deficit (D) on the saturated photosynthetic rate (Amax). All empirical mathematical models seemed to provide a good estimation of the light response parameters. Comparisons of the leaf photosynthetic traits between different species needed to select an appropriate model and indicated the microenvironmental conditions when the data were collected. When the vapour pressure deficit inside the chamber was not controlled, the incorporation of linear or exponencial functions that explained the effects of D on leaf gas exchange, was a very good method to enhance the performance of the models.


2018 ◽  
Vol 64 (No. 5) ◽  
pp. 233-239 ◽  
Author(s):  
Yasutake Daisuke ◽  
Yokoyama Gaku ◽  
Maruo Kyosuke ◽  
Wu Yueru ◽  
Wang Weizhen ◽  
...  

A whole-plant chamber system equipped with a transpiration sap flow meter was developed for measuring the transpiration rate even if leaves are wetted. A preliminary experiment in which dynamics of transpiration rate and/or evaporation rate of wetted and non-wetted plants were measured and compared with each other demonstrated the validity of the measurement system. The system was then used to analyse leaf wetting effects on gas exchange of corn under slight water stress conditions of soil (a volumetric soil water content of 9.7%). Leaf wetting decreased vapour pressure in leaves by decreasing leaf temperature but it increased vapour pressure in the air; therefore, vapour pressure difference between leaves and air, as a driving force of transpiration, was significantly lower in wetted plant. As a result, transpiration rate decreased by 44% and leaf conductance as an index of stomatal aperture was increased by leaf wetting. Such increasing leaf conductance due to leaf wetting increased the photosynthetic rate by 30% and therefore it improved water use efficiency (2.4 times). These results suggest that morning leaf wetting due to night time dew formation may have an advantage in crop production in semi-arid regions.


Sign in / Sign up

Export Citation Format

Share Document