The development of the ITI®DENTAL IMPLANT SYSTEM

2000 ◽  
Vol 11 ◽  
pp. 22-32 ◽  
Author(s):  
Marcel Scacchi ◽  
Beat R. Merz, ◽  
Alex R. Schär
1998 ◽  
Vol 17 (1) ◽  
pp. 106-118 ◽  
Author(s):  
Daniel Buser ◽  
Urs C. Belser ◽  
Niklaus P. Lang

2020 ◽  
Vol 10 (17) ◽  
pp. 5826
Author(s):  
Pei-Ju Lin ◽  
Kuo-Chih Su

A dental implant is currently the most commonly used treatment for patients with lost teeth. There is no biomechanical reference available to study the effect of different occlusion conditions on dental implants with different positions. Therefore, the aim of this study was to conduct a biomechanical analysis of the impact of four common occlusion conditions on the different positions of dental implants using the finite element method. We built a finite element model that included the entire mandible and implanted seven dental implant fixtures. We also applied external force to the position of muscles on the mandible of the superficial masseter, deep masseter, medial pterygoid, anterior temporalis, middle temporalis, and posterior temporalis to simulate the four clenching tasks, namely the incisal clench (INC), intercuspal position (ICP), right unilateral molar clench (RMOL), and right group function (RGF). The main indicators measured in this study were the reaction force on the temporomandibular joint (TMJ) and the fixed top end of the abutment in the dental implant system, and the stress on the mandible and dental implant systems. The results of the study showed that under the occlusion conditions of RMOL, the dental implant system (113.99 MPa) and the entire mandible (46.036 MPa) experienced significantly higher stress, and the reaction force on the fixed-top end of the abutment in the dental implant system (261.09 N) were also stronger. Under the occlusion of ICP, there was a greater reaction force (365.8 N) on the temporomandibular joint. In addition, it was found that the reaction force on the posterior region (26.968 N to 261.09 N) was not necessarily greater than that on the anterior region (28.819 N to 70.431 N). This information can help clinicians and dental implant researchers understand the impact of different chewing forces on the dental implant system at different positions after the implantation.


2018 ◽  
Vol 12 (04) ◽  
pp. 546-552
Author(s):  
Valenzuela Rocío ◽  
Daniel Valenzuela

ABSTRACT Objective: The aim of this study is to assess the surface roughness of the implant-retained mandibular bar overdenture (BOD) and the implant-retained mandibular ball joint overdenture (BJOD) in jaw and its relation with the adhesion of molds and yeasts and mesophyll aerobe, in time 30 and 180 days in mouth. Materials and Methods: Five-systems titanium bar CARES® and synOcta® Straumann® Dental Implant System, Holding AG Inc., Basel, Switzerland (BOD), and five-systems joint ball Klockner® Implant System; Soadco Inc., Escaldes-Engordany; Andorra (BJOD), were used in two parallel groups of five participants, in an essay to simple blind person. To 30 and 180 days, the overdentures were withdrawn and evaluated the Ra: ųm. SJ-301® Mitutoyo Corporation Inc., Kanagawa, Japan, and the adhesion of microorganisms (colony-forming unit/ml). Results: The results were as follows: the Ra: Um (30th and 180th): BOD, 0.965–1.351; BJOD, 1.325–2.384. Adhesion: Molds and yeasts, BOD, 2.6 × 102 and 4.6 × 103; BJOD, 3.0 × 102 and 5.3 × 104. Adhesion: Mesophyll aerobe, BOD, 3.8 × 106 and 5.8 × 106; BJOD, 4.3 × 106 and 7.1 × 107. Conclusions: At 30 days (P = 0.489), there were no differences in BOD and BJOD for adhesion of molds and yeasts and mesophyll aerobe between both overdentures. At 180 days (P = 0.723), there were differences in the adhesion of mold and yeast and mesophyll aerobe, being greater in BJOD.


2019 ◽  
Vol 122 (4) ◽  
pp. 376-382 ◽  
Author(s):  
Hung-Chih Chang ◽  
Hung-Yuan Li ◽  
Yen-Nien Chen ◽  
Chih-Han Chang ◽  
Chau-Hsiang Wang

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Peter Schupbach ◽  
Roland Glauser ◽  
Sebastian Bauer

Dental implants with moderately rough surfaces show enhanced osseointegration and faster bone healing compared with machined surfaces. The sandblasting and acid-etching (SA) process is one technique to create moderately rough dental implant surfaces. The purpose of this study was to analyse different commercially available implant systems with a SA-modified surface and to explore the widespread notion that they have similar surface properties regarding morphology and cleanliness. SA-modified surfaces of nine implant systems manufactured by Alpha-Bio Tec Ltd, Camlog Biotechnologies AG, Dentsply Sirona Dental GmbH, Neoss Ltd, Osstem Implant Co. Ltd, Institute Straumann AG, and Thommen Medical AG were analyzed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) and examined for surface cleanliness. Six implants from three different lots were selected per each implant system. Mean particle counts for each implant and the mean size of the particles were calculated from three different regions of interest and compared using ANOVA and Tukey’s test. SEM analysis showed presence of particles on the majority of analyzed implant surfaces, and EDX evaluations determined that the particles were made of Al2O3 and thus remnants of the blasting process. SPI®ELEMENT INICELL® and Bone Level (BL) Roxolid® SLActive® implant surfaces showed the highest mean particle counts, 46.6 and 50.3 per area, respectively. The surface of BL Roxolid® SLActive® implant also showed the highest variations in the particle counts, even in samples from the same lot. The mean size of particles was 1120±1011 μm2, measured for USIII CA Fixture implants, while the biggest particle was 5900 μm2 found on a BL Roxolid® SLActive® implant. These results suggest that not all manufacturers are able to produce implant surfaces without particle contamination and highlight that the surface modification process with the SA technique should be appropriately designed and controlled to achieve a clean and consistent final medical device.


Sign in / Sign up

Export Citation Format

Share Document