Vertical profiles of aerosol scattering and absorption measured in situ during the North Atlantic Aerosol Characterization Experiment (ACE-2)

Tellus B ◽  
2000 ◽  
Vol 52 (2) ◽  
pp. 526-545 ◽  
Author(s):  
Elisabeth Ostrom ◽  
Kevin J. Noone
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Edwards ◽  
Pierre Hélaouët ◽  
Eric Goberville ◽  
Alistair Lindley ◽  
Geraint A. Tarling ◽  
...  

AbstractIn the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Consequently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic.


2019 ◽  
Author(s):  
Tanguy Szekely ◽  
Jérôme Gourrion ◽  
Sylvie Pouliquen ◽  
Gilles Reverdin

Abstract. We present the Copernicus in-situ ocean dataset of temperature and salinity (version V5.2). The ocean subsurface sampling varied widely from 1950 to 2017, as a result of changes in the instrument technology and development of in-situ observational networks (in particular, tropical moorings, ARGO program). The global ocean temperature data coverage on an annual basis grows thus from 10 % in 1950 (30 % for the North Atlantic basin) to 25 % in 2000 (60 % for the North Atlantic basin) and reaches a plateau exceeding 80 % (95 % for the North Atlantic Ocean) after the deployment of the ARGO program. The average depth reached by the profiles also increases from 1950 to 2017. The validation framework is presented, and an objective analysis-based method is developed to assess the quality of the dataset validation process. Analyses of the ocean variability are calculated without taking into account the data quality flags (raw dataset OA), with the near real time quality flags (NRT dataset OA) and with the delayed time mode quality flags (CORA dataset OA). The comparison of the objective analysis variability shows that the near real time dataset managed to detect and to flag most of the large measurement errors, reducing the analysis error bar compared to the raw dataset error bar. It also shows that the ocean variability of the delayed time mode validated dataset is almost exempt from the random error induced variability.


Zootaxa ◽  
2020 ◽  
Vol 4766 (2) ◽  
pp. 201-260 ◽  
Author(s):  
CHRISTOPHER L. MAH

Exploratory cruises by the NOAA Ship Okeanos Explorer have resulted in a substantial contribution in our understanding of deep-sea echinoderm biodiversity, biology, and ecology in the North Atlantic. This includes the description and in situ feeding observations of two, new corallivorous goniasterid species, Evoplosoma nizinskiae n. sp. and Sibogaster bathyheuretor n. sp. Significant in situ observations include a synchronous feeding event including multiple goniasterid asteroids and a cidaroid urchin on a large demosponge, providing new data for understanding echinoderm feeding behavior, including agonistic behavior, in deep-sea settings and new, in situ feeding observations for 28 deep-sea species including the myxasterid Pythonaster atlantidis, the korethrasterid Remaster palmatus and the poorly understood hippasterine goniasterids, Gilbertaster caribaea and Sthenaster emmae. 


1997 ◽  
Vol 102 (D9) ◽  
pp. 10739-10750 ◽  
Author(s):  
H. Schlager ◽  
P. Konopka ◽  
P. Schulte ◽  
U. Schumann ◽  
H. Ziereis ◽  
...  

2009 ◽  
Vol 66 (7) ◽  
pp. 1467-1479 ◽  
Author(s):  
Sarah L. Hughes ◽  
N. Penny Holliday ◽  
Eugene Colbourne ◽  
Vladimir Ozhigin ◽  
Hedinn Valdimarsson ◽  
...  

Abstract Hughes, S. L., Holliday, N. P., Colbourne, E., Ozhigin, V., Valdimarsson, H., Østerhus, S., and Wiltshire, K. 2009. Comparison of in situ time-series of temperature with gridded sea surface temperature datasets in the North Atlantic. – ICES Journal of Marine Science, 66: 1467–1479. Analysis of the effects of climate variability and climate change on the marine ecosystem is difficult in regions where long-term observations of ocean temperature are sparse or unavailable. Gridded sea surface temperature (SST) products, based on a combination of satellite and in situ observations, can be used to examine variability and long-term trends because they provide better spatial coverage than the limited sets of long in situ time-series. SST data from three gridded products (Reynolds/NCEP OISST.v2., Reynolds ERSST.v3, and the Hadley Centre HadISST1) are compared with long time-series of in situ measurements from ICES standard sections in the North Atlantic and Nordic Seas. The variability and trends derived from the two data sources are examined, and the usefulness of the products as a proxy for subsurface conditions is discussed.


Sign in / Sign up

Export Citation Format

Share Document