Acoustic equivalent source methods

AccessScience ◽  
2015 ◽  
Keyword(s):  
2020 ◽  
Vol 2 (1) ◽  
pp. 15-18
Author(s):  
Syabeela Syahali ◽  
Ewe Hong Tat ◽  
Gobi Vetharatnam ◽  
Li-Jun Jiang ◽  
Hamsalekha A Kumaresan

This paper analyses the backscattering cross section of a cylinder both using traditional method model and a new numerical solution model, namely Relaxed Hierarchical Equivalent Source Algorithm (RHESA). The purpose of this study is to investigate the prospect of incorporating numerical solution model into volume scattering calculation, to be applied into microwave remote sensing in vegetation area. Results show a good match, suggesting that RHESA may be suitable to be used to model the more complex nature of vegetation medium.


Author(s):  
Xiao Hu ◽  
Yang Qiu ◽  
Qing-Lin Xu ◽  
Jin Tian

This paper presents an efficient hybrid method consisting of Lorentz reciprocity theorem, finite-difference-time-domain (FDTD) method, thin wire model, transmission line (TL) equations and transfer impedance model, which can be utilized to analyze the system-level transient responses of the microstrip antenna system with antenna, metallic enclosures, braided shielded cable, and lumped element, when illuminated by an external electromagnetic pulse (EMP). In order to avoid over-fine mesh generation and repeated modeling of the antenna in multiple simulations, Lorentz reciprocity theorem is employed to extract an equivalent source model of antenna coupling, thereby improving the computational efficiency. Then, the transfer impedance model and thin wire model are incorporated into the FDTD-TL method efficiently to deal with the back-door coupling through the shielding layer of feeding coaxial cable. Finally, the hybrid FDTD method combined with the extracted equivalent source of antenna coupling is utilized to solve the coupling responses of the whole antenna system. The results of numerical simulation are verified by comparing with the simulation results of CST CS. Then, considering the influence of different incident conditions of external EMP, the characteristics of the coupling response of the system are analyzed. The obtained coupling response information demonstrate that the proposed method is available for further designing electromagnetic protection of the inner circuits of the microstrip antenna system against the impact of external EMP.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. B121-B133 ◽  
Author(s):  
Shida Sun ◽  
Chao Chen ◽  
Yiming Liu

We have developed a case study on the use of constrained inversion of magnetic data for recovering ore bodies quantitatively in the Macheng iron deposit, China. The inversion is constrained by the structural orientation and the borehole lithology in the presence of high magnetic susceptibility and strong remanent magnetization. Either the self-demagnetization effect caused by high susceptibility or strong remanent magnetization would lead to an unknown total magnetization direction. Here, we chose inversion of amplitude data that indicate low sensitivity to the direction of magnetization of the sources when constructing the underground model of effective susceptibility. To reduce the errors that arise when treating the total-field anomaly as the projection of an anomalous field vector in the direction of the geomagnetic reference field, we develop an equivalent source technique to calculate the amplitude data from the total-field anomaly. This equivalent source technique is based on the acquisition of the total-field anomaly, which uses the total-field intensity minus the magnitude of the reference field. We first design a synthetic model from a simplified real case to test the new approach, involving the amplitude data calculation and the constrained amplitude inversion. Then, we apply this approach to the real data. The results indicate that the structural orientation and borehole susceptibility bounds are compatible with each other and are able to improve the quality of the recovered model to obtain the distribution of ore bodies quantitatively and effectively.


Sign in / Sign up

Export Citation Format

Share Document