ankle movement
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 26)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Maira Jaqueline da Cunha ◽  
Camila Pinto ◽  
Bruna Zanfir ◽  
Veronica Cimolin ◽  
Aline Souza Pagnussat

2021 ◽  
pp. 1-9
Author(s):  
Ahmed Farrag ◽  
Moath Almusallam ◽  
Nora Almulhim ◽  
Eidan Alzahrani ◽  
Zaenab Alowa ◽  
...  

BACKGROUND: Assessment of the plantar flexion (PF) isokinetic performance has been greatly diverse and based on personal preferences rather than standardized guidelines. OBJECTIVE: To examine the performance of the plantar flexors under different settings including knee joint angle and subject position. METHODS: Thirteen women and 20 men took part in this study. The isokinetic protocol (60∘/s) was set to ankle movement between 10∘ dorsiflexion to 30∘ PF. Participants performed three repetitions of concentric PF in randomly-ordered knee angles; 15∘, 45∘ and 90∘, and in seated and supine positions. Surface electromyography (EMG) data were collected from the Soleus (SOL) and Gastrocnemius. RESULTS: Knee angle impacted the PF moment (P⩽ 0.001–0.026) and work (P⩽ 0.05) measures in both genders. The moment and work measures were significantly less in the 90∘ than those in the 45∘ and 15∘ positions. The 45∘ position had the highest values, particularly in sitting in the male participants. Only the GL EMG data was significantly impacted (P= 0.017) by the subject position. However, the difference was trivial (1.6%). The SOL muscle showed a consistent pattern of increased activity when the knee was in flexion. CONCLUSION: The 45∘ position seems to be optimal for obtaining the highest isokinetic PF scores.


Author(s):  
CHANHEE PARK ◽  
JONGSEOK HWANG ◽  
JOSHUA SUNG H. YOU

Although ankle robotic control has emerged as a critical component of robot-interactive gait training (RIGT), no study has investigated the neurophysiological and biomechanical effects on ankle muscle activity and joint angle kinematics in healthy adults and participants with brain damage, including stroke and cerebral palsy (CP). This study compared the effects of RIGT, with and without ankle control actuator, on ankle muscle activity and joint angle kinematics in healthy adults and participants with brain damage. Ten patients ([Formula: see text], left hemiparetic [Formula: see text], [Formula: see text]) underwent standardized surface electromyography (EMG) neurophysiological and kinematics biomechanical tests under the RIGT with and without ankle control actuator conditions. Outcome measures included the EMG amplitudes of the tibialis anterior and gastrocnemius muscle activity, and ankle movement angles recorded with a two-axis digital inclinometer. Descriptive statistical analysis demonstrated that RIGT with ankle control actuator showed superior effects on EMG (30%) and kinematics angles (25%) than RIGT without ankle control actuator. Our results provided novel, promising clinical evidence that RIGT with ankle control actuator can more effectively improve the neurophysiological EMG data and ankle dorsiflexion and plantarflexion movements than RIGT without ankle control actuator in participants with stroke and CP.


Author(s):  
Ali M. Alshami ◽  
Tadhi K. Alshammari ◽  
Mona I. AlMuhaish ◽  
Tarek M. Hegazi ◽  
Mahbubunnabi Tamal ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefan Delmas ◽  
Yoon Jin Choi ◽  
Marcel Komer ◽  
Michelle Weintraub ◽  
Basma Yacoubi ◽  
...  

AbstractHere, we aimed to understand if older adults (OA) use a unique motor plan that is detrimental to endpoint control. We performed two experiments that used ankle ballistic contractions that reversed at the target. In Experiment 1, eight young adults (YA; 27.1 ± 4.2) and eight OA (73.3 ± 4.5) aimed to perform an ankle dorsiflexion–plantarflexion movement that reversed at 9° in 180 ms (target). We found that the coordination pattern (motor plan) differed for the two groups. OA used significantly greater soleus (SOL) activity to reverse the ankle movement than YA and exhibited greater tibialis anterior (TA) muscle activity variability (p < 0.05). OA exhibited worse endpoint control than YA, which associated with the exacerbated TA variability (R2 > 0.2; p < 0.01). Experiment 2 aimed to confirm that the OA motor plan was detrimental to endpoint control. Fifteen YA (20.5 ± 1.4) performed an ankle dorsiflexion–plantarflexion contraction that reversed at 30% MVC in 160 ms by using either a pattern that mimicked OA (High SOL) or YA (Low SOL). With the High SOL coordination pattern, YA exhibited impaired endpoint control and greater TA activation variability. These findings provide strong evidence that OA select a unique motor plan that is detrimental to endpoint control.


2021 ◽  
pp. 154596832199904
Author(s):  
Brice T. Cleland ◽  
Sangeetha Madhavan

Background Stroke rehabilitation may be improved with a better understanding of the contribution of ipsilateral motor pathways to the paretic limb and alterations in transcallosal inhibition. Few studies have evaluated these factors during dynamic, bilateral lower limb movements, and it is unclear whether they relate to functional outcomes. Objective Determine if lower limb ipsilateral excitability and transcallosal inhibition after stroke depend on target limb, task, or number of limbs involved, and whether these factors are related to clinical measures. Methods In 29 individuals with stroke, ipsilateral and contralateral responses to transcranial magnetic stimulation were measured in the paretic and nonparetic tibialis anterior during dynamic (unilateral or bilateral ankle dorsiflexion/plantarflexion) and isometric (unilateral dorsiflexion) conditions. Relative ipsilateral excitability and transcallosal inhibition were assessed. Fugl-Meyer, ankle movement accuracy, and walking characteristics were assessed. Results Relative ipsilateral excitability was greater during dynamic than isometric conditions in the paretic limb ( P ≤ .02) and greater in the paretic than the nonparetic limb during dynamic conditions ( P ≤ .004). Transcallosal inhibition was greater in the ipsilesional than contralesional hemisphere ( P = .002) and during dynamic than isometric conditions ( P = .03). Greater ipsilesional transcallosal inhibition was correlated with better ankle movement accuracy ( R2 = 0.18, P = .04). Greater contralateral excitability to the nonparetic limb was correlated with improved walking symmetry ( R2 = 0.19, P = .03). Conclusions Ipsilateral pathways have increased excitability to the paretic limb, particularly during dynamic tasks. Transcallosal inhibition is greater in the ipsilesional than contralesional hemisphere and during dynamic than isometric tasks. Ipsilateral pathways and transcallosal inhibition may influence walking asymmetry and ankle movement accuracy.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Hogene Kim ◽  
Ji-Eun Cho

Introduction: The objective of this study was to investigate the effect of passive biaxial ankle movement therapy on cortical activities. We hypothesized that biaxial ankle passive movement therapy changes patterns of sensorimotor cortical activations during ankle passive movement in chronic stroke. Methods: Seventeen patients with stroke were randomized to either experimental or control group. The experimental group (n=11) received the biaxial ankle training and the control group (n=6) had conventional therapies on affected ankle for a 30-minute daily session, five times a week for a month. Outcome measure was cortical activations by measuring the relative changes of oxygenated hemoglobin concentration between ipsilesional-/contralesional hemisphere during passive ankle movement using functional near-infrared spectroscopy(fNIRS)(Figure 1). All assessments was conducted before and after the training. Significance level was 0.05. Results: fNIRS images showed that ipsilesional oxyhemoglobin concentration increased around primary sensorimotor cortex (SMC) area in both control and experimental groups at the baseline ( P <0.05). After the ankle training, the ipsilesional oxyhemoglobin concentration significantly increased around somatosensory area for both control and experimental groups ( P <0.05, Figure 2). Conclusions: The results of this study showed significant ipsilesional cortical activation in SMC during biaxial ankle movement before and after the ankle training. Further study on the analysis according to the direction of ankle movement for both ipsilesional and contralesional brain area is needed.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1162
Author(s):  
Hogene Kim ◽  
Sangwoo Cho ◽  
Hwiyoung Lee

This study involves measurements of bi-axial ankle stiffness in older adults, where the ankle joint is passively moved along the talocrural and subtalar joints using a custom ankle movement trainer. A total of 15 elderly individuals participated in test–retest reliability measurements of bi-axial ankle stiffness at exactly one-week intervals for validation of the angular displacement in the device. The ankle’s range of motion was also compared, along with its stiffness. The kinematic measurements significantly corresponded to results from a marker-based motion capture system (dorsi-/plantar flexion: r = 0.996; inversion/eversion: r = 0.985). Bi-axial ankle stiffness measurements showed significant intra-class correlations (ICCs) between the two visits for all ankle movements at slower (2.14°/s, ICC = 0.712) and faster (9.77°/s, ICC = 0.879) speeds. Stiffness measurements along the talocrural joint were thus shown to have significant negative correlation with active ankle range of motion (r = −0.631, p = 0.012). The ankle movement trainer, based on anatomical characteristics, was thus used to demonstrate valid and reliable bi-axial ankle stiffness measurements for movements along the talocrural and subtalar joint axes. Reliable measurements of ankle stiffness may help clinicians and researchers when designing and fabricating ankle-foot orthosis for people with upper-motor neuron disorders, such as stroke.


Sign in / Sign up

Export Citation Format

Share Document