scholarly journals Reliability of Bi-Axial Ankle Stiffness Measurement in Older Adults

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1162
Author(s):  
Hogene Kim ◽  
Sangwoo Cho ◽  
Hwiyoung Lee

This study involves measurements of bi-axial ankle stiffness in older adults, where the ankle joint is passively moved along the talocrural and subtalar joints using a custom ankle movement trainer. A total of 15 elderly individuals participated in test–retest reliability measurements of bi-axial ankle stiffness at exactly one-week intervals for validation of the angular displacement in the device. The ankle’s range of motion was also compared, along with its stiffness. The kinematic measurements significantly corresponded to results from a marker-based motion capture system (dorsi-/plantar flexion: r = 0.996; inversion/eversion: r = 0.985). Bi-axial ankle stiffness measurements showed significant intra-class correlations (ICCs) between the two visits for all ankle movements at slower (2.14°/s, ICC = 0.712) and faster (9.77°/s, ICC = 0.879) speeds. Stiffness measurements along the talocrural joint were thus shown to have significant negative correlation with active ankle range of motion (r = −0.631, p = 0.012). The ankle movement trainer, based on anatomical characteristics, was thus used to demonstrate valid and reliable bi-axial ankle stiffness measurements for movements along the talocrural and subtalar joint axes. Reliable measurements of ankle stiffness may help clinicians and researchers when designing and fabricating ankle-foot orthosis for people with upper-motor neuron disorders, such as stroke.

This paper describes the development of Physical Modelling of Series Elastic Actuator for Active Ankle-Foot Orthosis by using Simscape Multibody Link. Active Ankle-Foot Orthosis is essential that can be used for the rehabilitation process to the patient. It is useful in medicine to help a patient who loses their walking ability, due to ankle weakness, to regain the walking ability. This project focuses on the design, simulate and physical modelling for Ankle-Foot Orthosis. This project was used Solidworks as a platform to design the Active Ankle-Foot Orthosis and using MatLab/Simulink for simulation by using Simscape Multibody Link tools. The Active Ankle-Foot Orthosis moves in 2 basic movement of ankle that is dorsiflexion and plantar flexion for rehabilitation. So, this project focuses on the physical modelling for the Series Elastic Actuator that drives the ankle movement mimicking the normal gait cycle.


2020 ◽  
Vol 5 (3) ◽  
pp. 58
Author(s):  
Stefano Gobbo ◽  
Barbara Vendramin ◽  
Enrico Roma ◽  
Federica Duregon ◽  
Danilo Sales Bocalini ◽  
...  

The aim of this study was to evaluate the test–retest reliability of an integrated inertial sensor (IIS) for cervical range of motion assessment. An integrated inertial sensor was placed on the forehead center of thirty older adults (OA) and thirty younger adults (YA). Participants had to perform three continuous rotations, lateral bandings and flexion–extensions with their head. Test–retest reliability was assessed after 7 days. YA showed moderate to good agreement for rotation (0.54–0.82), lateral bending (0.74–0.8), and flexion–extension (0.74–0.81) movements and poor agreement for zero point (ZP). OA showed moderate to good agreement for rotation (0.65–0.86), good to excellent agreement in lateral bending (0.79–0.92), and poor to moderate agreement for flexion–extension (0.37–0.72). Zero point showed poor to moderate agreement. In conclusion, we can affirm that this IIS is a reliable device for cervical range of motion assessment in young and older adults; on the contrary, the ZP seems to be unreliable and the addition of an external reference point could help the subject to solve this shortcoming and reduce possible biases.


2019 ◽  
Vol 5 (3) ◽  
pp. 74
Author(s):  
Rezarta Stena ◽  
Klara Hysenaj ◽  
Mitilda Gugu Karoli ◽  
Armelda Teta ◽  
Gjergji Doka

It is known that worldwide populations are aging, and also that physical activity can play an important role in minimizing impairments characteristic of old age. Adopting a more active lifestyle and doing regular physical activity, including aerobic and resistance exercises, daily walking etc. have been demonstrated to improve cardiovascular, respiratory, and musculoskeletal parameters in older adults. We assessed a potential participant from Elbasan (Albania), 67 years, for eligibility to participate in a 5 month training program. The subject gave written informed consent before inclusion.The following parameters were measured at the beginning (baseline) and end of the training period: BMI, body fat percentage, hand grip strength, lower/upper limb and trunk flexibility and range of motion, heart rate, balance, pain intensity, as well as VO2 max, directly and/or an estimate using the Rockport fitness test estimate. An initial evaluation was carried out just before starting the training (baseline). A second evaluation was made 5 months after starting the program of physical exercise (post training). Each evaluation included the recording of health related events, such as any changes in previous symptoms, as well as measurements of balance, flexibility, body composition, coordination, muscle strength, and aerobic capacity, to detect any changes that might have been induced specifically by physical activity. The subject’s attendance and participation in the program was also recorded. Range of motion for each part evaluated (trunk, hip, cervical region and shoulder) is improved about 15-20° degree. BMI, hand grip strength, lower/upper limb and trunk flexibility, heart rate, balance, pain intensity, VO2 max are also improved after training program. Following a training program or a regular physical activity in older adults minimise impairments characteristics in this age and cardiovascular, respiratory, and musculoskeletal parameters. According to the low importance shown in my country for the physical activity in older adults, I want to emphasize the importance of state structures involvement and the sensibilization of this group of age to stimulate an actively participation in physical training programs followed by professionals for bests life parameters. A higher investment for this age group, building as many facilities as possible for activation and spending quality free time, hiring more physiotherapists in nursing homes will increase life motivation and improve the quality and the parameters of living.


2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0011
Author(s):  
Tiago S. Baumfeld ◽  
Roberto Zambelli de A. Pinto ◽  
Fernando Araujo S. Lopes ◽  
Daniel Baumfeld ◽  
Camilo Tavares

Category: Hindfoot Introduction/Purpose: Objective: To evaluate and quantify the loss of ankle mobility in patients undergoing subtalar arthrodesis compared to the contralateral side, through physical examination. Methods: A total of 12 patients who had only the subtalar arthrodesis procedure from various causes in one foot were selected. The same foot and ankle surgeon performed all measurements of bilateral tibiotarsal range of motion, with loaded closed-chain and unloaded open-chain tests. Then, to assess whether there was a difference between the operated and the non-operated side, statistical analysis was performed with the Mann-Whitney test (Hollander and Wolfe 1999). Results: On the loaded closed-chain test, the operated side had a significantly lower range of motion than the contralateral side, with a mean difference of 5.4 degrees for dorsal flexion and 7.6 degrees for plantar flexion. The open-chain tests showed non- significant differences of 3 degrees for dorsal flexion and 5.3 degrees for plantar flexion. Conclusion: Subtalar joint arthrodesis was shown to cause a loss of mobility in the ipsilateral ankle, which is greater in plantar flexion movement.


2018 ◽  
Vol 26 (4) ◽  
pp. 530-536 ◽  
Author(s):  
Ka-Man Leung ◽  
Pak-Kwong Chung ◽  
Tin-Lok Yuen ◽  
Jing Dong Liu ◽  
Donggen Wang

This study evaluated the psychometric properties of a Chinese version of the 24-item Social Environment Questionnaire (SEQ-C). Confirmatory factor analysis was used to examine the factor validity and measurement invariance (Purpose 1) of the SEQ-C in 453 older adults in Hong Kong. Convergent validity (Purpose 2) and test–retest reliability (Purpose 3) were also measured. The results of the confirmatory factor analysis and measurement invariance supported the four-factor structure (representing companionship, encouragement, neighborhood social cohesion, and role models) of the SEQ-C, in a 15-item model that closely fitted the data. The SEQ-C was also found to have acceptable to satisfactory internal consistency, test–retest reliability, composite reliability, and moderate convergent validity in correlating perceived social support. This study showed that the SEQ-C is a suitable means of measuring the social environments of older adults in Hong Kong.


2017 ◽  
Vol 26 (3) ◽  
pp. 239-244 ◽  
Author(s):  
Cameron J. Powden ◽  
Kathleen K. Hogan ◽  
Erik A. Wikstrom ◽  
Matthew C. Hoch

Context:Talocrural joint mobilizations are commonly used to address deficits associated with chronic ankle instability (CAI).Objective:Examine the immediate effects of talocrural joint traction in those with CAI.Design:Blinded, crossover.Setting:Laboratory.Participants:Twenty adults (14 females; age = 23.80 ± 4.02 y; height = 169.55 ± 12.38 cm; weight = 78.34 ± 16.32 kg) with self-reported CAI participated. Inclusion criteria consisted of a history of ≥1 ankle sprain, ≥2 episodes of giving way in the previous 3 mo, answering “yes” to ≥4 questions on the Ankle Instability Instrument, and ≤24 on the Cumberland Ankle Instability Tool.Intervention:Subjects participated in 3 sessions in which they received a single treatment session of sustained traction (ST), oscillatory traction (OT), or a sham condition in a randomized order. Interventions consisted of four 30-s sets of traction with 1 min of rest between sets. During ST and OT, the talus was distracted distally from the ankle mortise to the end-range of accessory motion. ST consisted of continuous distraction and OT involved 1-s oscillations between the mid and end-range of accessory motion. The sham condition consisted of physical contact without force application. Preintervention and postintervention measurements of weight-bearing dorsiflexion, dynamic balance, and static single-limb balance were collected.Main Outcome Measures:The independent variable was treatment (ST, OT, sham). The dependent variables included pre-to-posttreatment change scores for the WBLT (cm), normalized SEBTAR (%), and time-to-boundary (TTB) variables(s). Separate 1-way ANOVAs examined differences between treatments for each dependent variable. Alpha was set a priori at P < .05.Results:No significant treatment effects were identified for any variables.Conclusion:A single intervention of ST or OT did not produce significant changes in weight-bearing dorsiflexion range of motion or postural control in individuals with CAI. Future research should investigate the effects of repeated talocrural traction treatments and the effects of this technique when combined with other manual therapies.


Foot & Ankle ◽  
1989 ◽  
Vol 9 (4) ◽  
pp. 194-200 ◽  
Author(s):  
Arne Lundberg ◽  
Ian Goldie ◽  
Bo Kalin ◽  
Göran Selvik

In an in vivo investigation of eight healthy volunteers, three dimensional ankle/foot kinematics were analyzed by roentgen stereophotogrammetry in 10° steps of motion from 30° of plantar flexion to 30° of dorsiflexion of the foot. The study included all of the joints between the tibia and the first metatarsal, as well as the talocalcaneal joint, and was performed under full body load. Although the talocrural joint was found to account for most of the rotation around the transverse axis occurring from 30° of plantar flexion to 30° of dorsiflexion, there was a substantial contribution from the joints of the arch. This was seen particularly in the input arc from 30° of plantar flexion to the neutral position, where the dorsiflexion motion of these joints amounted to 10% to 41% of the total transverse axis rotation.


Actuators ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Taehoon Lee ◽  
Inwoo Kim ◽  
Yoon Su Baek

Lower limb exoskeleton robots help with walking movements through mechanical force, by identifying the wearer’s walking intention. When the exoskeleton robot is lightweight and comfortable to wear, the stability of walking increases, and energy can be used efficiently. However, because it is difficult to implement the complex anatomical movements of the human body, most are designed simply. Due to this, misalignment between the human and robot movement causes the wearer to feel uncomfortable, and the stability of walking is reduced. In this paper, we developed a two degrees of freedom (2DoF) ankle exoskeleton robot with a subtalar joint and a talocrural joint, applying a four-bar linkage to realize the anatomical movement of a simple 1DoF structure mainly used for ankles. However, bidirectional tendon-driven actuators (BTDAs) do not consider the difference in a length change of both cables due to dorsiflexion (DF) and plantar flexion (PF) during walking, causing misalignment. To solve this problem, a BTDA was developed by considering the length change of both cables. Cable-driven actuators and exoskeleton robot systems create uncertainty. Accordingly, adaptive control was performed with a proportional-integral-differential neural network (PIDNN) controller to minimize system uncertainty.


2019 ◽  
Author(s):  
Stephanie A Maganja ◽  
David C Clarke ◽  
Scott A Lear ◽  
Dawn C Mackey

BACKGROUND To assess whether commercial-grade activity monitors are appropriate for measuring step counts in older adults, it is essential to evaluate their measurement properties in this population. OBJECTIVE This study aimed to evaluate test-retest reliability and criterion validity of step counting in older adults with self-reported intact and limited mobility from 6 commercial-grade activity monitors: Fitbit Charge, Fitbit One, Garmin vívofit 2, Jawbone UP2, Misfit Shine, and New-Lifestyles NL-1000. METHODS For test-retest reliability, participants completed two 100-step overground walks at a usual pace while wearing all monitors. We tested the effects of the activity monitor and mobility status on the absolute difference in step count error (%) and computed the standard error of measurement (SEM) between repeat trials. To assess criterion validity, participants completed two 400-meter overground walks at a usual pace while wearing all monitors. The first walk was continuous; the second walk incorporated interruptions to mimic the conditions of daily walking. Criterion step counts were from the researcher tally count. We estimated the effects of the activity monitor, mobility status, and walk interruptions on step count error (%). We also generated Bland-Altman plots and conducted equivalence tests. RESULTS A total of 36 individuals participated (n=20 intact mobility and n=16 limited mobility; 19/36, 53% female) with a mean age of 71.4 (SD 4.7) years and BMI of 29.4 (SD 5.9) kg/m<sup>2</sup>. Considering test-retest reliability, there was an effect of the activity monitor (<i>P</i>&lt;.001). The Fitbit One (1.0%, 95% CI 0.6% to 1.3%), the New-Lifestyles NL-1000 (2.6%, 95% CI 1.3% to 3.9%), and the Garmin vívofit 2 (6.0%, 95 CI 3.2% to 8.8%) had the smallest mean absolute differences in step count errors. The SEM values ranged from 1.0% (Fitbit One) to 23.5% (Jawbone UP2). Regarding criterion validity, all monitors undercounted the steps. Step count error was affected by the activity monitor (<i>P</i>&lt;.001) and walk interruptions (<i>P</i>=.02). Three monitors had small mean step count errors: Misfit Shine (−1.3%, 95% CI −19.5% to 16.8%), Fitbit One (−2.1%, 95% CI −6.1% to 2.0%), and New-Lifestyles NL-1000 (−4.3%, 95 CI −18.9% to 10.3%). Mean step count error was larger during interrupted walking than continuous walking (−5.5% vs −3.6%; <i>P</i>=.02). Bland-Altman plots illustrated nonsystematic bias and small limits of agreement for Fitbit One and Jawbone UP2. Mean step count error lay within an equivalence bound of ±5% for Fitbit One (<i>P</i>&lt;.001) and Misfit Shine (<i>P</i>=.001). CONCLUSIONS Test-retest reliability and criterion validity of step counting varied across 6 consumer-grade activity monitors worn by older adults with self-reported intact and limited mobility. Walk interruptions increased the step count error for all monitors, whereas mobility status did not affect the step count error. The hip-worn Fitbit One was the only monitor with high test-retest reliability and criterion validity.


Biomedicine ◽  
2020 ◽  
Vol 39 (2) ◽  
pp. 305-309
Author(s):  
Albin Jerome ◽  
Karthikeyan Jeyabalan ◽  
Hoe Kean Keong ◽  
Gaurai Gharote

Introduction and Aim: Diabetic Cheiroarthropathy is defined as the condition of restriction joint mobility due to pseudo-sclerodermatous hand, the fibrosis of the elastin connective tissues over the skin. It limits joint mobility especially around Tibia fibular mobility that are interrelated with the flexibility of ankle motion that results in the balance disorder in diabetic population. The aim of the study was to determine the effects of the tibia fibular mobilization technique on ankle joint in diabetes mellitus patients. Materials and Methods: 60 diabetic subjects were randomly assigned into experimental group and control, in which experimental group received Tibia fibular mobilization technique and conventional treatment whereas control group received only conventional treatment 1 time a week for 3 weeks. Results: There is no significant difference in Ankle dorsi flexion range of motion in both extremities but there is significant difference in ankle plantar flexion range of motion in both extremities and functional reach test in both extremities. Conclusion: There is a significant difference in the ankle plantar flexion range of motion and functional reach test, Hence, mobilization of Tibiofibular joint will be beneficial in improving the ankle range of motion and balance factor in the diabetic population.  


Sign in / Sign up

Export Citation Format

Share Document