Stereotyping Ricochet: Effects of Race on Identification Accuracy

2000 ◽  
Author(s):  
Heather M. Kleider ◽  
Stephen D. Goldinger

2020 ◽  
Vol 63 (7) ◽  
pp. 2054-2069
Author(s):  
Brandon Merritt ◽  
Tessa Bent

Purpose The purpose of this study was to investigate how speech naturalness relates to masculinity–femininity and gender identification (accuracy and reaction time) for cisgender male and female speakers as well as transmasculine and transfeminine speakers. Method Stimuli included spontaneous speech samples from 20 speakers who are transgender (10 transmasculine and 10 transfeminine) and 20 speakers who are cisgender (10 male and 10 female). Fifty-two listeners completed three tasks: a two-alternative forced-choice gender identification task, a speech naturalness rating task, and a masculinity/femininity rating task. Results Transfeminine and transmasculine speakers were rated as significantly less natural sounding than cisgender speakers. Speakers rated as less natural took longer to identify and were identified less accurately in the gender identification task; furthermore, they were rated as less prototypically masculine/feminine. Conclusions Perceptual speech naturalness for both transfeminine and transmasculine speakers is strongly associated with gender cues in spontaneous speech. Training to align a speaker's voice with their gender identity may concurrently improve perceptual speech naturalness. Supplemental Material https://doi.org/10.23641/asha.12543158







2013 ◽  
Vol 37 (6) ◽  
pp. 432-440 ◽  
Author(s):  
Peter F. Molinaro ◽  
Andrea Arndorfer ◽  
Steve D. Charman


2010 ◽  
Author(s):  
Maik Stamm ◽  
M. Ercan Altinsoy ◽  
Sebastian Merchel


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3429 ◽  
Author(s):  
Chu ◽  
Yuan ◽  
Hu ◽  
Pan ◽  
Pan

With increasing size and flexibility of modern grid-connected wind turbines, advanced control algorithms are urgently needed, especially for multi-degree-of-freedom control of blade pitches and sizable rotor. However, complex dynamics of wind turbines are difficult to be modeled in a simplified state-space form for advanced control design considering stability. In this paper, grey-box parameter identification of critical mechanical models is systematically studied without excitation experiment, and applicabilities of different methods are compared from views of control design. Firstly, through mechanism analysis, the Hammerstein structure is adopted for mechanical-side modeling of wind turbines. Under closed-loop control across the whole wind speed range, structural identifiability of the drive-train model is analyzed in qualitation. Then, mutual information calculation among identified variables is used to quantitatively reveal the relationship between identification accuracy and variables’ relevance. Then, the methods such as subspace identification, recursive least square identification and optimal identification are compared for a two-mass model and tower model. At last, through the high-fidelity simulation demo of a 2 MW wind turbine in the GH Bladed software, multivariable datasets are produced for studying. The results show that the Hammerstein structure is effective for simplify the modeling process where closed-loop identification of a two-mass model without excitation experiment is feasible. Meanwhile, it is found that variables’ relevance has obvious influence on identification accuracy where mutual information is a good indicator. Higher mutual information often yields better accuracy. Additionally, three identification methods have diverse performance levels, showing their application potentials for different control design algorithms. In contrast, grey-box optimal parameter identification is the most promising for advanced control design considering stability, although its simplified representation of complex mechanical dynamics needs additional dynamic compensation which will be studied in future.



Author(s):  
Bochang Zou ◽  
Huadong Qiu ◽  
Yufeng Lu

The detection of spherical targets in workpiece shape clustering and fruit classification tasks is challenging. Spherical targets produce low detection accuracy in complex fields, and single-feature processing cannot accurately recognize spheres. Therefore, a novel spherical descriptor (SD) for contour fitting and convex hull processing is proposed. The SD achieves image de-noising by combining flooding processing and morphological operations. The number of polygon-fitted edges is obtained by convex hull processing based on contour extraction and fitting, and two RGB images of the same group of objects are obtained from different directions. The two fitted edges of the same target object obtained at two RGB images are extracted to form a two-dimensional array. The target object is defined as a sphere if the two values of the array are greater than a custom threshold. The first classification result is obtained by an improved K-NN algorithm. Circle detection is then performed on the results using improved Hough circle detection. We abbreviate it as a new Hough transform sphere descriptor (HSD). Experiments demonstrate that recognition of spherical objects is obtained with 98.8% accuracy. Therefore, experimental results show that our method is compared with other latest methods, HSD has higher identification accuracy than other methods.



2021 ◽  
Vol 11 (15) ◽  
pp. 6923
Author(s):  
Rui Zhang ◽  
Zhanzhong Tang ◽  
Dong Luo ◽  
Hongxia Luo ◽  
Shucheng You ◽  
...  

The use of remote sensing technology to monitor farmland is currently the mainstream method for crop research. However, in cloudy and misty regions, the use of optical remote sensing image is limited. Synthetic aperture radar (SAR) technology has many advantages, including high resolution, multi-mode, and multi-polarization. Moreover, it can penetrate clouds and mists, can be used for all-weather and all-time Earth observation, and is sensitive to the shape of ground objects. Therefore, it is widely used in agricultural monitoring. In this study, the polarization backscattering coefficient on time-series SAR images during the rice-growing period was analyzed. The rice identification results and accuracy of InSAR technology were compared with those of three schemes (single-time-phase SAR, multi-time-phase SAR, and combination of multi-time-phase SAR and InSAR). Results show that VV and VH polarization coherence coefficients can well distinguish artificial buildings. In particular, VV polarization coherence coefficients can well distinguish rice from water and vegetation in August and September, whereas VH polarization coherence coefficients can well distinguish rice from water and vegetation in August and October. The rice identification accuracy of single-time series Sentinel-1 SAR image (78%) is lower than that of multi-time series SAR image combined with InSAR technology (81%). In this study, Guanghan City, a cloudy region, was used as the study site, and a good verification result was obtained.



Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1166
Author(s):  
Wei Zhang ◽  
Liang Gong ◽  
Suyue Chen ◽  
Wenjie Wang ◽  
Zhonghua Miao ◽  
...  

In the process of collaborative operation, the unloading automation of the forage harvester is of great significance to improve harvesting efficiency and reduce labor intensity. However, non-standard transport trucks and unstructured field environments make it extremely difficult to identify and properly position loading containers. In this paper, a global model with three coordinate systems is established to describe a collaborative harvesting system. Then, a method based on depth perception is proposed to dynamically identify and position the truck container, including data preprocessing, point cloud pose transformation based on the singular value decomposition (SVD) algorithm, segmentation and projection of the upper edge, edge lines extraction and corner points positioning based on the Random Sample Consensus (RANSAC) algorithm, and fusion and visualization of results on the depth image. Finally, the effectiveness of the proposed method has been verified by field experiments with different trucks. The results demonstrated that the identification accuracy of the container region is about 90%, and the absolute error of center point positioning is less than 100 mm. The proposed method is robust to containers with different appearances and provided a methodological reference for dynamic identification and positioning of containers in forage harvesting.



Sign in / Sign up

Export Citation Format

Share Document