Eye Movements and the Stability of the Visual World

Nature ◽  
1958 ◽  
Vol 182 (4644) ◽  
pp. 1214-1216 ◽  
Author(s):  
R. L. GREGORY
Author(s):  
Michael K. Tanenhaus

Recently, eye movements have become a widely used response measure for studying spoken language processing in both adults and children, in situations where participants comprehend and generate utterances about a circumscribed “Visual World” while fixation is monitored, typically using a free-view eye-tracker. Psycholinguists now use the Visual World eye-movement method to study both language production and language comprehension, in studies that run the gamut of current topics in language processing. Eye movements are a response measure of choice for addressing many classic questions about spoken language processing in psycholinguistics. This article reviews the burgeoning Visual World literature on language comprehension, highlighting some of the seminal studies and examining how the Visual World approach has contributed new insights to our understanding of spoken word recognition, parsing, reference resolution, and interactive conversation. It considers some of the methodological issues that come to the fore when psycholinguists use eye movements to examine spoken language comprehension.


1994 ◽  
Vol 17 (2) ◽  
pp. 258-258 ◽  
Author(s):  
Eugene Chekaluk

The calibration solution to the stability of the world despite eye movements depends, according to Bridgeman et al., upon a combination of three factors which presumably all need to operate to achieve the goal of stability. Although the authors admit (sect. 4.3, para. 5) that the relative contributions of retinal and extraretinal factors will depend on the particular viewing situation, Figure 5 (sect. 4.3) makes it clear in its representation that the role of perceptual factors is relatively minor compared to extraretinal ones. It is with this representation that this commentary wishes to take issue, believing that it occurs as a result of some assumptions about terminology that may be ambiguous, as well as some misconceptions about the circumstances in which there is a need for stability.


2011 ◽  
Vol 137 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Anne Pier Salverda ◽  
Meredith Brown ◽  
Michael K. Tanenhaus
Keyword(s):  

2017 ◽  
Vol 21 (2) ◽  
pp. 251-264 ◽  
Author(s):  
AINE ITO ◽  
MARTIN CORLEY ◽  
MARTIN J. PICKERING

We used the visual world eye-tracking paradigm to investigate the effects of cognitive load on predictive eye movements in L1 (Experiment 1) and L2 (Experiment 2) speakers. Participants listened to sentences whose verb was predictive or non-predictive towards one of four objects they were viewing. They then clicked on a mentioned object. Half the participants additionally performed a working memory task of remembering words. Both L1 and L2 speakers looked more at the target object predictively in predictable- than in non-predictable sentences when they performed the listen-and-click task only. However, this predictability effect was delayed in those who performed the concurrent memory task. This pattern of results was similar in L1 and L2 speakers. L1 and L2 speakers make predictions, but cognitive resources are required for making predictive eye movements. The findings are compatible with the claim that L2 speakers use the same mechanisms as L1 speakers to make predictions.


Author(s):  
Fiona Mulvey

This chapter introduces the basics of eye anatomy, eye movements and vision. It will explain the concepts behind human vision sufficiently for the reader to understand later chapters in the book on human perception and attention, and their relationship to (and potential measurement with) eye movements. We will first describe the path of light from the environment through the structures of the eye and on to the brain, as an introduction to the physiology of vision. We will then describe the image registered by the eye, and the types of movements the eye makes in order to perceive the environment as a cogent whole. This chapter explains how eye movements can be thought of as the interface between the visual world and the brain, and why eye movement data can be analysed not only in terms of the environment, or what is looked at, but also in terms of the brain, or subjective cognitive and emotional states. These two aspects broadly define the scope and applicability of eye movements technology in research and in human computer interaction in later sections of the book.


2017 ◽  
Vol 117 (2) ◽  
pp. 808-817 ◽  
Author(s):  
Kyriaki Mikellidou ◽  
Marco Turi ◽  
David C. Burr

Humans maintain a stable representation of the visual world effortlessly, despite constant movements of the eyes, head, and body, across multiple planes. Whereas visual stability in the face of saccadic eye movements has been intensely researched, fewer studies have investigated retinal image transformations induced by head movements, especially in the frontal plane. Unlike head rotations in the horizontal and sagittal planes, tilting the head in the frontal plane is only partially counteracted by torsional eye movements and consequently induces a distortion of the retinal image to which we seem to be completely oblivious. One possible mechanism aiding perceptual stability is an active reconstruction of a spatiotopic map of the visual world, anchored in allocentric coordinates. To explore this possibility, we measured the positional motion aftereffect (PMAE; the apparent change in position after adaptation to motion) with head tilts of ∼42° between adaptation and test (to dissociate retinal from allocentric coordinates). The aftereffect was shown to have both a retinotopic and spatiotopic component. When tested with unpatterned Gaussian blobs rather than sinusoidal grating stimuli, the retinotopic component was greatly reduced, whereas the spatiotopic component remained. The results suggest that perceptual stability may be maintained at least partially through mechanisms involving spatiotopic coding.NEW & NOTEWORTHY Given that spatiotopic coding could play a key role in maintaining visual stability, we look for evidence of spatiotopic coding after retinal image transformations caused by head tilt. To this end, we measure the strength of the positional motion aftereffect (PMAE; previously shown to be largely spatiotopic after saccades) after large head tilts. We find that, as with eye movements, the spatial selectivity of the PMAE has a large spatiotopic component after head rotation.


2017 ◽  
Vol 102 (2) ◽  
pp. 253-259 ◽  
Author(s):  
Fatema F Ghasia ◽  
Jorge Otero-Millan ◽  
Aasef G Shaikh

IntroductionFixational saccades are miniature eye movements that constantly change the gaze during attempted visual fixation. Visually guided saccades and fixational saccades represent an oculomotor continuum and are produced by common neural machinery. Patients with strabismus have disconjugate binocular horizontal saccades. We examined the stability and variability of eye position during fixation in patients with strabismus and correlated the severity of fixational instability with strabismus angle and binocular vision.MethodsEye movements were measured in 13 patients with strabismus and 16 controls during fixation and visually guided saccades under monocular viewing conditions. Fixational saccades and intersaccadic drifts were analysed in the viewing and non-viewing eye of patients with strabismus and controls.ResultsWe found an increase in fixational instability in patients with strabismus compared with controls. We also found an increase in the disconjugacy of fixational saccades and intrasaccadic ocular drift in patients with strabismus compared with controls. The disconjugacy was worse in patients with large-angle strabismus and absent stereopsis. There was an increase in eye position variance during drifts in patients with strabismus. Our findings suggest that both fixational saccades and intersaccadic drifts are abnormal and likely contribute to the fixational instability in patients with strabismus.DiscussionFixational instability could be a useful tool for mass screenings of children to diagnose strabismus in the absence of amblyopia and latent nystagmus. The increased disconjugacy of fixational eye movements and visually guided saccades in patients with strabismus reflects the disruption of the fine-tuning of the motor and visual systems responsible for achieving binocular fusion in these patients.


Sign in / Sign up

Export Citation Format

Share Document