True Stress to Fracture and Hyper-velocity Crater Depth

Nature ◽  
1965 ◽  
Vol 207 (5002) ◽  
pp. 1182-1182
Author(s):  
ROBERT F. ROLSTEN
Keyword(s):  
Author(s):  
Sijia Zhong ◽  
Jianfeng Shi ◽  
Jinyang Zheng

Polyethylene (PE) pipes have been applied in transportation of key energy medium such as natural gas in the past decades. The mechanical property of PE is of great importance for better design and safer application of PE pipeline system. The large deformation behavior is a key character of PE, not only for its significant strain rate sensitivity, but also for localized necking process after yielding. In this paper, a new constitutive modeling method was proposed to charaterize the rate-denpendent large deformation behavior of PE, in which the true stress is regarded as a function of true stain and true strain rate alone. Uniaxial tensile tests of PE were conducted under various cross-head speeds, and a digital camera was used to record the real-time deformation of specimens. By separating the composite effect into respective effect of local true strain and strain rate on the local true stress in the necking region, a phenomenological model for describing the rate-dependent deformation behavior under uniaxial tension was ealstablished. Model results were validated and found in good agreement with experimental data.


2021 ◽  
Vol 1035 ◽  
pp. 189-197
Author(s):  
Bao Ying Li ◽  
Bao Hong Zhu

The hot deformation behavior of spray-formed AlSn20Cu alloy during hot compression deformation was studied, and the constitutive equation of AlSn20Cu alloy was established. The samples of spray-formed AlSn20Cu alloy were compressed on Gleeble-3500 thermal simulation test machine. The error of the true stress caused by adiabatic heating effect in the experiment was corrected. The constitutive equation of spray-formed AlSn20Cu alloy could be represented by Zener-Hollomon parameter in a hyperbolic sine function. The results showed that the deformation temperatures and strain rates had a notable effect on the true stress of the alloy. At the identical deformation temperature, the true stress increased with the increase of strain rate. When the strain rate was constant, the stress decreased with the increase of deformation temperature. After hot compression deformation, the tin phase was elongated along the direction perpendicular to the compression axis with short strips and blocks. With the increase of deformation temperature and the decrease of strain rate, Sn phase distribution became more homogeneous.


1983 ◽  
Vol 16 (4) ◽  
pp. 288-289
Author(s):  
S.C. Bodine ◽  
R.F. Zernicke ◽  
V.R. Edgerton ◽  
R.R. Roy ◽  
D.M. Peller

Author(s):  
James M. Fragomeni ◽  
Giridhar Venugopal

Many systems that work on the processing of energy can be modeled in terms of that energy. The energy that is given to the system may be stored or dissipated in the form of heat. It was proposed to extend this concept to attainment of critical level of stored energy and/or dissipated energy for occurrence of buckling of a metal column under compressive loading. The fact that Energy Factor Parameter (E.F.P.) computed from the experimental true stress-true strain values, suddenly decreased and approached value close to zero indicated either buckling and/or softening, but deviated with the E.F.P. computed from the theoretical true stress and true strain values. The 7050-T7451 (Al-Zn-Mg-Cu-Zr) and Al-Li-Cu aluminum alloys in longitudinal and transverse grain orientations were compression tested for mechanical properties of yield strength, buckling strength, strength coefficient, strain hardening exponent. Correlation between ratio of buckling strength and yield strength with aging time for preaged ASTM compression specimens was established. The compression deformation of aluminum alloy 7050 was modeled using finite element analysis, with the experimental testing parameters and the database in the software package.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2967
Author(s):  
John Sweeney ◽  
Paul Spencer ◽  
Glen Thompson ◽  
David Barker ◽  
Phil Coates

Sheet specimens of a PLLA-based polymer have been extended at a temperature near to the glass transition in both uniaxial and planar tension, with stress relaxation observed for some time after reaching the final strain. Both axial and transverse stresses were recorded in the planar experiments. In all cases during loading, yielding at small strain was followed by a drop in true stress and then strain hardening. This was followed by stress relaxation at constant strain, during which stress dropped to reach an effectively constant level. Stresses were modelled as steady state and transient components. Steady-state components were identified with the long-term stress in stress relaxation and associated with an elastic component of the model. Transient stresses were modelled using Eyring mechanisms. The greater part of the stress during strain hardening was associated with dissipative Eyring processes. The model was successful in predicting stresses in both uniaxial and planar extension over a limited range of strain rate.


Sign in / Sign up

Export Citation Format

Share Document