Differences between Red Sea Brine Pools

Nature ◽  
1973 ◽  
Vol 241 (5391) ◽  
pp. 503-503
Keyword(s):  
Red Sea ◽  
2021 ◽  
Author(s):  
M. Clara Modenesi ◽  
J. Carlos Santamarina

<p>The demand for metals and raw materials continues to increase as onshore deposits become more depleted. Our oceans contain large unexplored areas that may contain new resources in the form of Mn-nodules, Co-rich crusts, and massive sulfides. A complete characterization and assessment of these deposits are fundamental for the evaluation of resource extraction, separation, and disposal processes.</p><p>The Red Sea holds unique examples of sediment accumulations formed under distinctive environmental conditions. The Atlantis II deep is located in the central part of the Red Sea at 2 km depth and on top of the spreading axis. This deep accumulates sediments that result predominantly from the discharge of hydrothermal fluids into hot and stratified brine pools. The changes in environmental conditions and the hydro-chemical conditions in the brine pool control sediment formation. The accumulations are enriched with metals, such as Ag, Au, Cu, Co, and Zn. The sediments in this deep hold a record of the formation history and their brine pools tell a story about on-going processes.</p><p>On-going research at the Energy Geo-Engineering Laboratory EGEL, KAUST includes (1) Geotechnical index properties (liquid limit, grain size distribution, and specific surface) and consolidation tests to infer engineering properties, (2) Sediment classification based on the Revised Soil Classification System, (3) Geochemistry and mineralogy using XRD, ICP-OES and (4) Microstructure and texture with SEM imaging. An advanced sediment characterization of these fine-grained metalliferous deposits gives a comprehensive understanding of the soil behavior.</p>


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 273 ◽  
Author(s):  
Laila Ziko ◽  
Mustafa Adel ◽  
Mohamed N. Malash ◽  
Rania Siam

The recent rise in antibiotic and chemotherapeutic resistance necessitates the search for novel drugs. Potential therapeutics can be produced by specialized metabolism gene clusters (SMGCs). We mined for SMGCs in metagenomic samples from Atlantis II Deep, Discovery Deep and Kebrit Deep Red Sea brine pools. Shotgun sequence assembly and secondary metabolite analysis shell (antiSMASH) screening unraveled 2751 Red Sea brine SMGCs, pertaining to 28 classes. Predicted categorization of the SMGC products included those (1) commonly abundant in microbes (saccharides, fatty acids, aryl polyenes, acyl-homoserine lactones), (2) with antibacterial and/or anticancer effects (terpenes, ribosomal peptides, non-ribosomal peptides, polyketides, phosphonates) and (3) with miscellaneous roles conferring adaptation to the environment/special structure/unknown function (polyunsaturated fatty acids, ectoine, ladderane, others). Saccharide (80.49%) and putative (7.46%) SMGCs were the most abundant. Selected Red Sea brine pool sites had distinct SMGC profiles, e.g., for bacteriocins and ectoine. Top promising candidates, SMs with pharmaceutical applications, were addressed. Prolific SM-producing phyla (Proteobacteria, Actinobacteria, Cyanobacteria), were ubiquitously detected. Sites harboring the largest numbers of bacterial and archaeal phyla, had the most SMGCs. Our results suggest that the Red Sea brine niche constitutes a rich biological mine, with the predicted SMs aiding extremophile survival and adaptation.


2017 ◽  
Vol 239 ◽  
pp. 82-86 ◽  
Author(s):  
Noura A. Shehab ◽  
Juan F. Ortiz-Medina ◽  
Krishna P. Katuri ◽  
Ananda Rao Hari ◽  
Gary Amy ◽  
...  

2017 ◽  
Vol 39 (6) ◽  
pp. 34-39
Author(s):  
Helen Albert

The ability of some organisms to live in extreme environments has always fascinated us. While more complex species such as mammals can live in very cold or hot surroundings, microorganisms definitely take the crown when it comes to being able to survive the most extreme conditions. These extremophiles are very resilient and can survive conditions that would kill other organisms in seconds. Indeed, some researchers believe that life may have begun with such organisms living deep under the ocean on hydrothermal vents. Helen Albert talks to Professor Rania Siam from The American University in Cairo, Egypt, about her research on microbes living near highly salty underwater ‘brine pools’ in the Red Sea. Helen also discusses the remarkable bacterium Deinococcus radiodurans, which is able to withstand high levels of radiation and desiccation, with Professor Michael Daly from the Uniformed Services University in Bethesda in the USA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dominik Renn ◽  
Lera Shepard ◽  
Alexandra Vancea ◽  
Ram Karan ◽  
Stefan T. Arold ◽  
...  

The Red Sea is a marine environment with unique chemical characteristics and physical topographies. Among the various habitats offered by the Red Sea, the deep-sea brine pools are the most extreme in terms of salinity, temperature and metal contents. Nonetheless, the brine pools host rich polyextremophilic bacterial and archaeal communities. These microbial communities are promising sources for various classes of enzymes adapted to harsh environments – extremozymes. Extremozymes are emerging as novel biocatalysts for biotechnological applications due to their ability to perform catalytic reactions under harsh biophysical conditions, such as those used in many industrial processes. In this review, we provide an overview of the extremozymes from different Red Sea brine pools and discuss the overall biotechnological potential of the Red Sea proteome.


There are now twelve heat flow measurements in the Red Sea made with heat flow probes from survey ships and several sets of temperature measurements made in deep exploration boreholes. The oceanic measurements are in water depths ranging from 0.94 to 2.70 km and all but one of these measurements give values significantly higher than the world mode of 46 mW m -2 (1.1 ). They include the world record high oceanic measurement of more than 3307 mW m -2 (79.0) in the neighbourhood of the hot brine pools. These measurements show that the deep axial trough of the Red Sea is associated with high heat flow, the values being similar to those found in the mid-Indian Ocean rift, the mid-Atlantic rift and over the crest of the East Pacific rise. It is of considerable interest to see if there is also high heat flow over the Red Sea margins and the main purpose of this paper is to examine temperature data from deep exploration boreholes. The boreholes are drilled mainly in rock salt, sandstones and shales. A discussion is given of the thermal conductivities assumed for these rocks. The boreholes have depths of up to 4 km and in some cases the temperature measurements enable an estimate to be made of the heat flow. These are also found to be high. The significance of the high heat flow to ideas concerning the structure and evolution of the Red Sea is discussed.


2014 ◽  
Vol 9 (2) ◽  
pp. 396-411 ◽  
Author(s):  
David Kamanda Ngugi ◽  
Jochen Blom ◽  
Intikhab Alam ◽  
Mamoon Rashid ◽  
Wail Ba-Alawi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document