Chinese hamster cell mutant with defective mitochondrial protein synthesis

Nature ◽  
1977 ◽  
Vol 268 (5615) ◽  
pp. 64-67 ◽  
Author(s):  
G. DITTA ◽  
K. SODERBERG ◽  
I. E. SCHEFFLER
1981 ◽  
Vol 90 (1) ◽  
pp. 108-115 ◽  
Author(s):  
K G Burnett ◽  
I E Scheffler

A defect in mitochondrial protein synthesis has previously been identified in the respiration-deficient Chinese hamster lung fibroblast mutant V79-G7. The present work extends the characterization of this mutant. A more sensitive analysis has shown that mutant mitochondria synthesize all mitochondrially encoded peptides, but in significantly reduced amounts. This difference is also seen when isolated mitochondria are tested for in vitro protein synthesis. To distinguish between a defect in the translational machinery and a defect in the transcription of mitochondrial DNA, we investigated the synthesis of the 16S and 12S mitochondrial rRNA species and found them to be made in normal amounts in G7 mitochondria. These rRNA species appear to be assembled into subunits whose sedimentation behavior is virtually indistinguishable from that of the wild-type subunits. We also examined the consequences of the defect in mitochondrial protein synthesis on mutant cells and their mitochondria-utilizing techniques of electron microscopy, two-dimensional gel electrophoresis and immunochemical analysis. G7 mitochondria have a characteristic ultrastructure distinguished by predominantly tubular cristae, but the overall biochemical composition of mitochondrial membrane and matrix fractions appears essentially unaltered except for the absence of a few characteristic peptides. Specifically, we identify the absence of two mitochondrially encoded subunits of cytochrome c oxidase on two-dimensional gels and demonstrate a drastic reduction of both cytoplasmically and mitochondrially synthesized subunits of enzyme in immunoprecipitates of G7 mitochondria.


1977 ◽  
Vol 55 (10) ◽  
pp. 1064-1074 ◽  
Author(s):  
R. W. Yatscoff ◽  
K. B. Freeman

Mitochondrial proteins labelled with [35S]methionine for 1 h in whole Chinese hamster ovary (CHO) cells in the presence of cycloheximide or emetine, known inhibitors of cytosolic protein synthesis, have been enumerated and characterized by their electrophoretic mobility in sodium dodecyl sulfate slab gel electrophoresis. Ten distinct electrophoretic bands were observed. The components were relatively stable during a 2 h postlabelling period. The same 10 bands were also seen with the CHO cell line tsH1, labelled at 40 °C, a temperature at which cytosolic but not mitochondrial protein synthesis is inhibited in this cell line, and with isolated mitochondria labelled in the presence of cycloheximide. An 11th band was present when [3H]leucine but not [35S] methionine was used for labelling. The width of the major band suggested that it consists of two components making a total of at least 12 proteins synthesized in mitochondria. The molecular weights of these mitochondrial proteins ranged from 5000 to 50000 and there was a sixfold difference in the relative molar amounts synthesized in a 1-h period in the presence of [3H]leucine or [3SS] methionine.No differences in number or electrophoretic mobility of the mitochondrially synthesized proteins were found among the seven CHO cell lines examined. These results suggest the stability of the mitochondrial genome in the CHO cell line.


1984 ◽  
Vol 98 (4) ◽  
pp. 1603-1605 ◽  
Author(s):  
J W Chamberlain ◽  
J W Pollard ◽  
C P Stanners

Chinese hamster ovary (CHO) cells were subjected to severe amino acid starvation for histidine, leucine, methionine, asparagine, tyrosine, glutamine, valine, and lysine, using amino acid analogs or mutations in specific aminoacyl-tRNA synthetases. At protein synthetic rates of less than 5%, in all cases, the newly synthesized proteins were found on two-dimensional electrophoretic gels to consist of a few intensely labeled spots, with the exception of lysine. This pattern could also be produced by strong inhibition of cytoplasmic protein synthesis with cycloheximide, and was abolished by preincubation with the mitochondrial protein synthesis inhibitor chloramphenicol. It appears therefore that the spots represent mitochondrial protein synthesis and that animal cells must have separate aminoacyl-tRNA synthetases for mitochondrial tRNAs corresponding to all these amino acids except, possibly, for lysine.


1989 ◽  
Vol 264 (32) ◽  
pp. 19125-19131
Author(s):  
C J Schwartzbach ◽  
L L Spremulli

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 674
Author(s):  
Francesco Capriglia ◽  
Francesca Rizzo ◽  
Giuseppe Petrosillo ◽  
Veronica Morea ◽  
Giulia d’Amati ◽  
...  

The m.3243A>G mutation within the mitochondrial mt-tRNALeu(UUR) gene is the most prevalent variant linked to mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome. This pathogenic mutation causes severe impairment of mitochondrial protein synthesis due to alterations of the mutated tRNA, such as reduced aminoacylation and a lack of post-transcriptional modification. In transmitochondrial cybrids, overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) has proven effective in rescuing the phenotype associated with m.3243A>G substitution. The rescuing activity resides in the carboxy-terminal domain (Cterm) of the enzyme; however, the precise molecular mechanisms underlying this process have not been fully elucidated. To deepen our knowledge on the rescuing mechanisms, we demonstrated the interactions of the Cterm with mutated mt-tRNALeu(UUR) and its precursor in MELAS cybrids. Further, the effect of Cterm expression on mitochondrial functions was evaluated. We found that Cterm ameliorates de novo mitochondrial protein synthesis, whilst it has no effect on mt-tRNALeu(UUR) steady-state levels and aminoacylation. Despite the complete recovery of cell viability and the increase in mitochondrial translation, Cterm-overexpressing cybrids were not able to recover bioenergetic competence. These data suggest that, in our MELAS cell model, the beneficial effect of Cterm may be mediated by factors that are independent of the mitochondrial bioenergetics.


Sign in / Sign up

Export Citation Format

Share Document