24, 25-Dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation

Nature ◽  
1978 ◽  
Vol 276 (5687) ◽  
pp. 517-519 ◽  
Author(s):  
A. ORNOY ◽  
D. GOODWIN ◽  
D. NOFF ◽  
S. EDELSTEIN
1989 ◽  
Vol 17 (3) ◽  
pp. 243-248
Author(s):  
H. Orimo ◽  
C. Tsutsumi ◽  
N. Hosoya ◽  
Y. Maeda ◽  
H. Yamato ◽  
...  

The effects of two vitamin D3 metabolites, 24 R,25-dihydroxyvitamin D3 and lα,25-dihydroxyvitamin D3, were investigated in ovariectomized rats. The amount of ash in the femur on a defatted dry weight basis was significantly greater in rats treated with 1 μg/kg 24 R,25-dihydroxyvitamin D3, or 0.01 or 0.1 μg/kg lα,25-dihydroxyvitamin D3 than in the controls. The concentration of bone gla protein in serum and amounts in the femur were significantly greater in rats treated with 1 or 10 Mg/kg 24 R,25-dihydroxyvitamin D3, but not those given 1α,25-dihydroxyvitamin D3 compared with the controls. These results suggest that 24 R,25-dihydroxyvitamin D3 increased bone mass probably through the stimulation of bone formation.


2000 ◽  
Vol 88 (4) ◽  
pp. 1271-1276 ◽  
Author(s):  
Orie Tajima ◽  
Noriko Ashizawa ◽  
Tomoo Ishii ◽  
Hitoshi Amagai ◽  
Tomoko Mashimo ◽  
...  

Bone metabolism is strongly influenced by heredity and environmental factors. To investigate interaction of the effects between vitamin D receptor polymorphism by Fok I and resistance exercise training on bone metabolism, young male subjects with FF genotype (F, n = 10) and Ff or ff genotypes (f, n = 10) followed 1 mo of weight training, and changes in bone metabolism were compared. An additional 14 subjects served as a sedentary control. Biomarkers of bone formation, bone-specific alkaline phosphatase, and osteocalcin were significantly increased by training in both F and f groups. 1,25-Dihydroxyvitamin D3, known to upregulate bone formation, was also increased by the training in the f but not in the F group. Bone resorption assessed by cross-linked NH2-terminal teropeptide of type I collagen was significantly suppressed by the training, and the decrease in F was greater and longer lasting than that in f group. In conclusion, stimulation of bone formation and suppression of bone resorption occurred within 1 mo in young men. Despite a significant increase in 1,25-dihydroxyvitamin D3 in the f group but not in the F group, the response of bone metabolism to the training in the F was similar to or greater than that in f group, suggesting a functional difference between vitamin D receptor genotypes f and F.


1982 ◽  
Vol 42 (6) ◽  
pp. 487-491 ◽  
Author(s):  
Claus Christiansen ◽  
Merete Sanvig Christensen ◽  
Peter McNair ◽  
Britta Nielsen ◽  
Steen Madsbad

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Annabelle G. Small ◽  
Sarah Harvey ◽  
Jaspreet Kaur ◽  
Trishni Putty ◽  
Alex Quach ◽  
...  

AbstractVitamin D deficiency remains a global concern. This ‘sunshine’ vitamin is converted through a multistep process to active 1,25-dihydroxyvitamin D3 (1,25D), the final step of which can occur in macrophages. Here we demonstrate a role for vitamin D in innate immunity. The expression of the complement receptor immunoglobulin (CRIg), which plays an important role in innate immunity, is upregulated by 1,25D in human macrophages. Monocytes cultured in 1,25D differentiated into macrophages displaying increased CRIg mRNA, protein and cell surface expression but not in classical complement receptors, CR3 and CR4. This was associated with increases in phagocytosis of complement opsonised Staphylococcus aureus and Candida albicans. Treating macrophages with 1,25D for 24 h also increases CRIg expression. While treating macrophages with 25-hydroxyvitamin D3 does not increase CRIg expression, added together with the toll like receptor 2 agonist, triacylated lipopeptide, Pam3CSK4, which promotes the conversion of 25-hydroxyvitamin D3 to 1,25D, leads to an increase in CRIg expression and increases in CYP27B1 mRNA. These findings suggest that macrophages harbour a vitamin D-primed innate defence mechanism, involving CRIg.


Author(s):  
Jan Mieszkowski ◽  
Andrzej Kochanowicz ◽  
Elżbieta Piskorska ◽  
Bartłomiej Niespodziński ◽  
Joanna Siódmiak ◽  
...  

Abstract Purpose/introduction To compare serum levels of bone turnover markers in athletes and non-athletes, and to evaluate the relationship between serum levels of vitamin D metabolites and exercise-induced changes in biomarker levels. Methods Sixteen elite male artistic gymnasts (EG; 21.4 ± 0.8 years-old) and 16 physically active men (the control group, PAM; 20.9 ± 1.2 years-old) performed lower and upper body 30-s Wingate anaerobic tests (LBWT and UBWT, respectively). For biomarker analysis, blood samples were collected before, and 5 and 30 min after exercise. Samples for vitamin D levels were collected before exercise. N-terminal propeptide of type I collagen (PINP) was analysed as a marker of bone formation. C-terminal telopeptide of type I collagen (CTX) was analysed as a marker of bone resorption. Results UBWT fitness readings were better in the EG group than in the PAM group, with no difference in LBWT readings between the groups. UBWT mean power was 8.8% higher in subjects with 25(OH)D3 levels over 22.50 ng/ml and in those with 24,25(OH)2D3 levels over 1.27 ng/ml. Serum CTX levels increased after both tests in the PAM group, with no change in the EG group. PINP levels did not change in either group; however, in PAM subjects with 25(OH)D3 levels above the median, they were higher than those in EG subjects. Conclusion Vitamin D metabolites affect the anaerobic performance and bone turnover markers at rest and after exercise. Further, adaptation to physical activity modulates the effect of anaerobic exercise on bone metabolism markers.


1995 ◽  
Vol 270 (4) ◽  
pp. 1675-1678 ◽  
Author(s):  
Claudia Zierold ◽  
Hisham M. Darwish ◽  
Hector F. DeLuca

1993 ◽  
Vol 3 (S1) ◽  
pp. 196-198 ◽  
Author(s):  
Y. Seino ◽  
S. Ishizuka ◽  
M. Shima ◽  
H. Tanaka
Keyword(s):  

2002 ◽  
pp. 45-59 ◽  
Author(s):  
K W Colston ◽  
C M√∏rk Hansen

It is now well established that, in addition to its central role in the maintenance of extracellular calcium levels and bone mineralization, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the active form of vitamin D, also acts as a modulator of cell growth and differentiation in a number of cell types, including breast cancer cells. The anti-proliferative effects of 1,25(OH)(2)D(3) have been linked to suppression of growth stimulatory signals and potentiation of growth inhibitory signals, which lead to changes in cell cycle regulators such as p21(WAF-1/CIP1) and p27(kip1), cyclins and retinoblastoma protein as well as induction of apoptosis. Such studies have led to interest in the potential use of 1,25(OH)(2)D(3) in the treatment or prevention of certain cancers. Since this approach is limited by the tendency of 1,25(OH)(2)D(3) to cause hypercalcaemia, synthetic vitamin D analogues have been developed which display separation of the growth regulating effects from calcium mobilizing actions. This review examines mechanisms by which 1,25(OH)(2)D(3) and its active analogues exert both anti-proliferative and pro-apoptotic effects and describes some of the synthetic analogues that have been shown to be of particular interest in relation to breast cancer.


2016 ◽  
Vol 37 (5) ◽  
pp. 521-547 ◽  
Author(s):  
Peter J. Tebben ◽  
Ravinder J. Singh ◽  
Rajiv Kumar

AbstractHypercalcemia occurs in up to 4% of the population in association with malignancy, primary hyperparathyroidism, ingestion of excessive calcium and/or vitamin D, ectopic production of 1,25-dihydroxyvitamin D [1,25(OH)2D], and impaired degradation of 1,25(OH)2D. The ingestion of excessive amounts of vitamin D3 (or vitamin D2) results in hypercalcemia and hypercalciuria due to the formation of supraphysiological amounts of 25-hydroxyvitamin D [25(OH)D] that bind to the vitamin D receptor, albeit with lower affinity than the active form of the vitamin, 1,25(OH)2D, and the formation of 5,6-trans 25(OH)D, which binds to the vitamin D receptor more tightly than 25(OH)D. In patients with granulomatous disease such as sarcoidosis or tuberculosis and tumors such as lymphomas, hypercalcemia occurs as a result of the activity of ectopic 25(OH)D-1-hydroxylase (CYP27B1) expressed in macrophages or tumor cells and the formation of excessive amounts of 1,25(OH)2D. Recent work has identified a novel cause of non-PTH-mediated hypercalcemia that occurs when the degradation of 1,25(OH)2D is impaired as a result of mutations of the 1,25(OH)2D-24-hydroxylase cytochrome P450 (CYP24A1). Patients with biallelic and, in some instances, monoallelic mutations of the CYP24A1 gene have elevated serum calcium concentrations associated with elevated serum 1,25(OH)2D, suppressed PTH concentrations, hypercalciuria, nephrocalcinosis, nephrolithiasis, and on occasion, reduced bone density. Of interest, first-time calcium renal stone formers have elevated 1,25(OH)2D and evidence of impaired 24-hydroxylase-mediated 1,25(OH)2D degradation. We will describe the biochemical processes associated with the synthesis and degradation of various vitamin D metabolites, the clinical features of the vitamin D-mediated hypercalcemia, their biochemical diagnosis, and treatment.


Sign in / Sign up

Export Citation Format

Share Document