scholarly journals An examination of obesity and breast cancer survival in post-menopausal women

1994 ◽  
Vol 70 (5) ◽  
pp. 928-933 ◽  
Author(s):  
A Katoh ◽  
VJM Watzlaf ◽  
F D'Amico
2021 ◽  
Author(s):  
Junxian Li ◽  
Chenyang Li ◽  
Ziwei Feng ◽  
Luyang Liu ◽  
Liwen Zhang ◽  
...  

Abstract BackgroundHigh levels of circulating estradiol (E2) are associated with increased risk of breast cancer, whereas its relationship with breast cancer prognosis is still unclear. We studied the effect of E2 concentration on breast cancer survival among pre- menopausal and post- menopausal patients in China.MethodsWe evaluated this association among 8766 breast cancer cases diagnosed between 2005 and 2017 from the Tianjin Breast Cancer Cases Cohort. Levels of serum E2 were measured in pre-menopausal and post-menopausal women. Multivariable-adjusted Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (95% CI) between quartile of E2 levels and overall survival (OS) and progression-free survival (PFS) of breast cancer. The penalized spline was then used to test for non-linear relationships between E2 (continuous variable) and survival endpoints.ResultsA total of 612 deaths and 982 progressions occurred over follow-up through 2017. Compared to women in the quartile 3, the highest quartile of E2 was associated with reduced risk of both PFS in pre-menopausal women (HR=1.79, 95% CI: 1.17-2.75, P=0.008) and OS in post-menopausal women (HR=1.35, 95% CI: 1.04-1.74, P=0.023). OS and PFS in pre-menopausal women exhibited a nonlinear relation (“L-shaped” and “U-shaped”, respectively) with E2 levels. However, there was a linear relationship in post-menopausal women, among whom increasing E2 was associated with escalating risks of death and progression. Moreover, patients with estrogen receptor-negative (ER-negative) breast cancer showed a “U-shaped” relationship with OS and PFS in pre-menopausal women.ConclusionsPre-menopausal breast cancer patients have a plateau stage of prognosis at the intermediate concentrations of E2, whereas post-menopausal patients have no apparent threshold, and ER status may have an impact on this relationship.


Author(s):  
Suong N.T. Ngo ◽  
Desmond B. Williams

Background: The effect of cruciferous vegetable intake on breast cancer survival is controversial at present. Glucosinolates are the naturally occurring constituents found across the cruciferous vegetables. Isothiocyanates are produced from the hydrolysis of glucosinolates and this reaction is catalysed by the plant-derived enzyme myrosinase. The main isothiocyanates (ITCs) from cruciferous vegetables are sulforaphane, benzyl ITC, and phenethyl ITC, which had been intensively investigated over the last decade for their antibreast cancer effects. Objective: The aim of this article is to systematically review the evidence from all types of studies, which examined the protective effect of cruciferous vegetables and/or their isothiocyanate constituents on breast cancer. Methods: A systematic review was conducted in Pubmed, EMBASE, and the Cochrane Library from inception to 27 April 2020. Peerreviewed studies of all types (in vitro studies, animal studies, and human studies) were selected. Results: The systematic literature search identified 16 human studies, 4 animal studies, and 65 in vitro studies. The effect of cruciferous vegetables and/or their ITCs intake on breast cancer survival was found to be controversial and varied greatly across human studies. Most of these trials were observational studies conducted in specific regions, mainly in the US and China. Substantial evidence from in vitro and animal studies was obtained, which strongly supported the protective effect of sulforaphane and other ITCs against breast cancer. Evidence from in vitro studies showed sulforaphane and other ITCs reduced cancer cell viability and proliferation via multiple mechanisms and pathways. Isothiocyanates inhibited cell cycle, angiogenesis and epithelial mesenchymal transition, as well as induced apoptosis and altered the expression of phase II carcinogen detoxifying enzymes. These are the essential pathways which promote the growth and metastasis of breast cancer. Noticeably, benzyl ITC showed a significant inhibitory effect on breast cancer stem cells, a new dimension of chemoresistance in breast cancer treatment. Sulforaphane and other ITCs displayed anti-breast cancer effects at variable range of concentrations and benzyl isothiocyanate appeared to have a relatively smallest inhibitory concentration IC50. The mechanisms underlying the cancer protective effect of sulforaphane and other ITCs have also been highlighted in this article. Conclusion: Current preclinical evidence strongly supports the role of sulforaphane and other ITCs as potential therapeutic agents for breast cancer, either as adjunct therapy or combined therapy with current anti-breast cancer drugs, with sulforaphane appeared to display the greatest potential.


Sign in / Sign up

Export Citation Format

Share Document