Protective Effect of Isothiocyanates from Cruciferous Vegetables on Breast Cancer: Epidemiological and Preclinical Perspectives

Author(s):  
Suong N.T. Ngo ◽  
Desmond B. Williams

Background: The effect of cruciferous vegetable intake on breast cancer survival is controversial at present. Glucosinolates are the naturally occurring constituents found across the cruciferous vegetables. Isothiocyanates are produced from the hydrolysis of glucosinolates and this reaction is catalysed by the plant-derived enzyme myrosinase. The main isothiocyanates (ITCs) from cruciferous vegetables are sulforaphane, benzyl ITC, and phenethyl ITC, which had been intensively investigated over the last decade for their antibreast cancer effects. Objective: The aim of this article is to systematically review the evidence from all types of studies, which examined the protective effect of cruciferous vegetables and/or their isothiocyanate constituents on breast cancer. Methods: A systematic review was conducted in Pubmed, EMBASE, and the Cochrane Library from inception to 27 April 2020. Peerreviewed studies of all types (in vitro studies, animal studies, and human studies) were selected. Results: The systematic literature search identified 16 human studies, 4 animal studies, and 65 in vitro studies. The effect of cruciferous vegetables and/or their ITCs intake on breast cancer survival was found to be controversial and varied greatly across human studies. Most of these trials were observational studies conducted in specific regions, mainly in the US and China. Substantial evidence from in vitro and animal studies was obtained, which strongly supported the protective effect of sulforaphane and other ITCs against breast cancer. Evidence from in vitro studies showed sulforaphane and other ITCs reduced cancer cell viability and proliferation via multiple mechanisms and pathways. Isothiocyanates inhibited cell cycle, angiogenesis and epithelial mesenchymal transition, as well as induced apoptosis and altered the expression of phase II carcinogen detoxifying enzymes. These are the essential pathways which promote the growth and metastasis of breast cancer. Noticeably, benzyl ITC showed a significant inhibitory effect on breast cancer stem cells, a new dimension of chemoresistance in breast cancer treatment. Sulforaphane and other ITCs displayed anti-breast cancer effects at variable range of concentrations and benzyl isothiocyanate appeared to have a relatively smallest inhibitory concentration IC50. The mechanisms underlying the cancer protective effect of sulforaphane and other ITCs have also been highlighted in this article. Conclusion: Current preclinical evidence strongly supports the role of sulforaphane and other ITCs as potential therapeutic agents for breast cancer, either as adjunct therapy or combined therapy with current anti-breast cancer drugs, with sulforaphane appeared to display the greatest potential.

Cancers ◽  
2012 ◽  
Vol 4 (3) ◽  
pp. 658-672 ◽  
Author(s):  
Ruqia Mehmood Baig ◽  
Andrew J. Sanders ◽  
Mahmood Akhtar Kayani ◽  
Wen G. Jiang

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
George Briassoulis ◽  
Efrossini Briassouli ◽  
Diana-Michaela Fitrolaki ◽  
Ioanna Plati ◽  
Kleovoulos Apostolou ◽  
...  

Heat shock protein 72 (Hsp72) exhibits a protective role during times of increased risk of pathogenic challenge and/or tissue damage. The aim of the study was to ascertain Hsp72 protective effect differences between animal and human studies in sepsis using a hypothetical “comparative study” model. Forty-one in vivo (56.1%), in vitro (17.1%), or combined (26.8%) animal and 14 in vivo (2) or in vitro (12) human Hsp72 studies (P<0.0001) were enrolled in the analysis. Of the 14 human studies, 50% showed a protective Hsp72 effect compared to 95.8% protection shown in septic animal studies (P<0.0001). Only human studies reported Hsp72-associated mortality (21.4%) or infection (7.1%) or reported results (14.3%) to be nonprotective (P<0.001). In animal models, any Hsp72 induction method tried increased intracellular Hsp72 (100%), compared to 57.1% of human studies (P<0.02), reduced proinflammatory cytokines (28/29), and enhanced survival (18/18). Animal studies show a clear Hsp72 protective effect in sepsis. Human studies are inconclusive, showing either protection or a possible relation to mortality and infections. This might be due to the fact that using evermore purified target cell populations in animal models, a lot of clinical information regarding the net response that occurs in sepsis is missing.


2001 ◽  
Vol 66 (3) ◽  
pp. 225-237 ◽  
Author(s):  
Rita S. Mehta ◽  
Richard Bornstein ◽  
Ing-Ru Yu ◽  
Ricardo J. Parker ◽  
Christine E. McLaren ◽  
...  

2019 ◽  
Vol 78 (5) ◽  
pp. 343-363
Author(s):  
Renee Korczak ◽  
Megan Kocher ◽  
Kelly S Swanson

Abstract Oats are uniquely nutritious, owing to their composition of bioactive compounds, lipids, and β-glucan. Scientific research has established that oats can improve diet quality, reduce cholesterol, regulate satiety, and protect against carcinogenesis in the colon; however, determining the effects of oats on gastrointestinal health and the gut microbiome is a newer, evolving area of research. To better understand the effects of oats on gastrointestinal health in humans, a literature review with predefined search criteria was conducted using the PubMed database and keywords for common gastrointestinal health outcomes. Moreover, to examine the gastrointestinal effects of oats across the scientific spectrum, a similar search strategy was executed to identify animal studies. In vitro studies were identified from the reference lists of human and animal studies. A total of 8 human studies, 19 animal studies, and 5 in vitro studies met the inclusion criteria for this review. The evidence in humans shows beneficial effects of oats on gastrointestinal health, with supportive evidence provided by in vitro and animal studies. The effective dose of oats varies by type, although an amount providing 2.5 to 2.9 g of β-glucan per day was shown to decrease fecal pH and alter fecal bacteria. For oat bran, 40 to 100 g/d was shown to increase fecal bacterial mass and short-chain fatty acids in humans. Differences in study design, methodology, and type of oats tested make valid comparisons difficult. The identification of best practices for the design of oat studies should be a priority in future research, as the findings will be useful for determining how oats influence specific indices of gastrointestinal health, including the composition of the human gut microbiome.


Sign in / Sign up

Export Citation Format

Share Document