Single-Stranded DNA-Binding Proteins (SSBPs) Promote the Oligomerization of LIM-Domain Binding Protein Ldb1

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2437-2437
Author(s):  
Ying Cai ◽  
Lalitha Nagarajan ◽  
Stephen J. Brandt

Abstract The multifunctional LIM domain-binding protein Ldb1 is important in multiple developmental programs, including hematopoiesis. An evolutionarily conserved family of proteins with single-stranded DNA-binding activity, the SSBPs, has been shown to act as Ldb1 partners and augment its biological actions. We recently established that Ssbp2 and Ssbp3 were components of an E-box-GATA DNA-binding complex in murine erythroid progenitors containing the LIM-only protein Lmo2 and transcription factors Tal1, E2A, and Gata1 and showed these SSBPs stimulated E box-GATA DNA-binding activity and inhibited Ldb1 ubiquitination and subsequent proteasomal degradation (Genes & Dev.21:942–955, 2007). As its SSBP interaction domain (Ldb1/Chip conserved domain or LCCD) is adjacent to Ldb1’s N-terminal dimerization domain (DD), we sought to determine whether SSBP binding affected Ldb1 dimerization. To investigate, the Ldb1 coding region was fused to the DNA-binding domain of the yeast transcription factor GAL4 (GAL4DBD) and in a second construct to the activation domain of herpesvirus VP16 (VP16AD). These fusion proteins were then expressed in mammalian cells with a luciferase reporter linked to a promoter with iterated GAL4 binding sites. Luciferase activity became detectable with coexpression of the VP16AD-Ldb1 and GAL4DBD-Ldb1 fusions, presumably from Ldb1 dimerization, which increased markedly with simultaneous expression of SSBP2. In contrast, SSBP2 (ΔLUFS) and Ldb1 (ΔLCCD) mutants incapable of interacting with Ldb1 and SSBPs, respectively, were inactive, suggesting that SSBP2 augmentation of Ldb1 dimerization involved direct protein-protein interactions. To exclude an effect of SSBP2 on turnover of Ldb1 fusion proteins, radiolabeled full-length Ldb1 and SSBP3 were prepared by in vitro transcription/translation, mixed, and subjected to chemical crosslinking. Addition of the crosslinker bis(sulfosuccinimidyl)-suberate (BS3) to Ldb1, but not SSBP3, led to the appearance of a radiolabeled protein with mobility in denaturing polyacrylamide gels approximately twice that of Ldb1, consistent with an Ldb1 homodimer. When SSBP3 and Ldb1 were mixed together and crosslinked, a dose-related increase was noted in a more retarded species predicted to contain two molecules each of Ldb1 and SSBP3, together with a decrease in monomeric Ldb1. Finally, two well-characterized dimerization-defective Ldb1 mutants, Ldb1(200–375) and Ldb1(50–375), failed to support the formation of the higher molecular weight species or to homodimerize. Thus, the SSBPs promoted assembly of ternary complexes incorporating both SSBP and Ldb1 in a manner dependent on Ldb1 dimerization. The failure to observe Ldb1-SSBP heterodimers in cross-linking experiments suggests, further, that the SSBPs interacted with preformed Ldb1 dimers. In summary, either through an allosteric effect on Ldb1’s DD or by altering the equilibrium between monomeric and dimeric species, the SSBPs promote Ldb1 oligomerization. Together with inhibition of Ldb1 ubiquitination and turnover, this would serve to augment Ldb1 function.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1739-1739
Author(s):  
Zhixiong Xu ◽  
Xianzhang Meng ◽  
Ying Cai ◽  
Lalitha Nagarajan ◽  
Stephen J. Brandt

Abstract The LIM domain-binding protein Ldb1 is known to form higher order complexes with LIM-homeodomain and LIM-only (LMO) proteins to regulate diverse developmental programs, including hematopoiesis. The level of Ldb1 is critical for its cellular roles, and its turnover is regulated by the E3 ubiquitin ligase RLIM. Single-stranded DNA-binding protein (SSDP), an Ldb1-interacting partner, is an essential gene for embryonic development and has been shown to regulate axis formation in Xenopus and wing development in Drosophila through Ldb1; however, the mechanisms by which SSDPs regulate these and other developmental programs are still obscure. We previously reported that a DNA-binding complex containing the basic helix-loop-helix protein TAL1/SCL, its DNA-binding partner E47, zinc finger protein GATA-1, LIM domain protein LMO2, and Ldb1 stimulates Protein 4.2 (P4.2) transcription in erythroid progenitors through tandem E box-GATA elements in the gene’s proximal promoter. We have now established that SSDP2 is associated with this complex (by supershift analysis) and occupies the promoter of this gene (by chromatin immunoprecipitation analysis) in murine erythroleukemia (MEL) cells. Further, enforced expression of SSDP2 in these cells stimulated P4.2 reporter activity and accumulation of P4.2 and beta-globin mRNAs, and cotransfection of SSDP2 with the five originally identified components of this complex further increased promoter activity in reporter analysis. Importantly, overexpression of SSDP2 in MEL cells significantly increased Ldb1 protein half-life and steady-state levels of Ldb1 and LMO2 protein. This effect on Ldb1 stability required the Ldb1-interacting domain of SSDP2, consisting of its first 94 amino acids (SSDP2(1–94)), and was also observed in Cos7L and CHO cells. We showed, in addition, that SSDP2 or SSDP2(1–94), but not an Ldb1 interaction-defective mutant, prevented RLIM-mediated degradation of both Ldb1 and LMO2 in transfected cells, that SSDP2 protection of LMO2 degradation required Ldb1, and that SSDP2 directly inhibited RLIM-mediated ubiquitination of Ldb1. Immunoprecipitation analysis revealed that overexpression of SSDP2 or SSDP2(1–94) significantly decreased interaction between Ldb1 and RLIM. Finally, SSDP2 protein expression in differentiating MEL cells paralleled this multi-protein DNA-binding activity and overexpression of SSDP2 in these cells dramatically increased E box-GATA DNA-binding activity, with maximal formation of the ternary complex requiring coexpression of SSDP2, Ldb1, and LMO2. Together, these studies reveal a positive role for SSDP2 in erythroid gene expression and identify a biochemical function for SSDP2 in regulating Ldb1 stability and transcriptional complex assembly. The mechanism mediating Ldb1 stabilization appears to involve competitive inhibition of RLIM interaction with Ldb1.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4850-4850
Author(s):  
Eroica Soans ◽  
John K Choi

Abstract Introduction TCF3 encodes for E2A protein, which belongs to the helix loop helix transcription factor family. E2A activates transcription of downstream genes by binding to E-box motifs as a homo or hetero dimer. E2A plays an important role in B lymphocyte development. Therefore deletion or mutations in TCF3 or even lowered activity of E2A are causes of B cell leukemia and lymphomas. Recently, three mutations V557E, D561E and N551K in E2A were isolated in Burkitt’s lymphoma (Schmitz, Young et al. 2012). The first two mutations are present in the homo dimerization region of E2A while N551K is present in the DNA binding region. Though the paper enumerated role of TCF3 in Burkitt’s lymphoma but the significance of these TCF3 mutations or mechanism needed further characterization. We hypothesized that these TCF3 mutations have an alternate mechanism as compared to wild type TCF3 and therefore may affect B cell development. Methods We characterized three TCF3 mutants by cloning them into in MIGR1 backbone using TOPO cloning. E2A activity was measured using an E2A-specific luciferase reporter assay in 293T cells. DNA binding activity was measured using a DNA protein binding colorimetric assay. Results V557E and D561E mutants have lower activity as compared to wild type E2A as studied using E2A-specific luciferase reporter assay; while N551K showed no activity in the same assay as compared to wild type E2A activity. Similarly V557E and D561 form weaker bonds with the E box motifs while N551K showed no DNA binding activity as studied using colorimetric DNA-protein binding assay. The plasmid expressions were verified using western blot analysis. Conclusion Our findings suggest mutations V557E and D561E may follow a similar pathway as wild-type E2A but have lower activity. The N551K mutation has an alternate pathway to wild type TCF3 that may impact B cell proliferation, survival and development. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1239-1239
Author(s):  
Ying Cai ◽  
Zhixiong Xu ◽  
Lalitha Nagarajan ◽  
Stephen J. Brandt

Abstract A small family of proteins with putative single-stranded DNA-binding activity has been shown to augment the biological actions of LIM-homeodomain (LIM-HD) transcription factors through the mediation of the LIM domain-binding protein LDB1. We recently established that two of these SSBPs, Ssbp2 and Ssbp3, were components of an E-box-GATA DNA-binding complex in murine erythroid progenitors containing transcription factors Tal1, E2A, and Gata-1 and LIM-only protein Lmo2 and showed that Ssbp2 stimulated E box-GATA DNA-binding activity by inhibiting Ldb1 ubiquitination and Ldb1 and Lmo2 turnover (Genes & Dev.21:942–955, 2007). Since LIM-HD proteins are substrates of different E3 ubiquitin ligases than LIM-only proteins and have the additional property of binding DNA, we sought to determine the effect of SSBPs on LIM-HD expression and function. Using the prototype LIM-HD protein Lhx2 and one of its best-characterized target genes, Cga, for analysis, we found that an Ssbp3-, Ldb1-, and Lhx2-containing complex associated with an Lhx2 binding element in the Cga promoter in vitro and in mouse pituitary cells (alphaT3-1 cell line) in vivo. We then showed that enforced expression of Ssbp2 and Ssbp3 in alphaT3-1 cells increased Lhx2 and Ldb1 protein abundance, Lhx2 DNA-binding activity, and Cga expression and augmented Lhx2 transcriptional activity in an Ldb1-dependent fashion. While Lhx2-Ldb1-Ssbp3 DNA-binding activity increased in Ssbp3- relative to vector-transfected cells, the affinity of this complex for DNA was unaltered. Similar to the effect of Ssbp2 on Lmo2 in murine erythroleukemia (MEL) cells, overexpressed Ssbp3 reduced Lhx2 protein turnover in cycloheximide-treated alphaT3-1 cells without affecting Lhx2 RNA levels. In contrast, knockdown of endogenous Ssbp3, but not Ssbp2 which is expressed at much lower levels in these cells, reduced Lhx2 and Ldb1 abundance, Lhx2 DNA-binding activity, Lhx2, Ldb1, and Ssbp3 loading onto the Cga promoter, Cga promoter activity, and endogenous Cga gene expression. Significantly, neither overexpression nor knockdown of Ssbp2 in MEL cells, which express both the LIM-only protein Lmo2 and LIM-HD protein Lhx2, affected Lhx2 protein abundance, and Lhx2 DNA-binding activity was undetectable in nuclear extracts from these cells despite the presence of immunoreactive Lhx2. These studies indicate that SSBP augmentation of LIM-HD function results from Ldb1-mediated inhibition of LIM-HD protein turnover and increased assembly of a LIM-HD/LDB1/SSBP DNA-binding complex. The much greater affinity for LDB1 of LIM-only compared to LIM-HD proteins is likely a major determinant of the SSBP effect on LIM-HD protein abundance. Finally, these findings are consistent with cell type-specific contributions of different SSBPs, even for similar LDB1-dependent actions.


2006 ◽  
Vol 188 (12) ◽  
pp. 4577-4580 ◽  
Author(s):  
Rajesh Kasiviswanathan ◽  
Jae-Ho Shin ◽  
Zvi Kelman

ABSTRACT The Cdc6 proteins from the archaeon Methanothermobacter thermautotrophicus were previously shown to bind double-stranded DNA. It is shown here that the proteins also bind single-stranded DNA. Using minichromosome maintenance (MCM) helicase mutant proteins unable to bind DNA, it was found that the interaction of MCM with Cdc6 inhibits the DNA binding activity of Cdc6.


2001 ◽  
Vol 29 (6) ◽  
pp. 688-691 ◽  
Author(s):  
K. J. Campbell ◽  
N. R. Chapman ◽  
N. D. Perkins

The cellular response to DNA-damaging agents is partly mediated by DNA-binding transcription factors such as p53 and nuclear factor κB (NF-κB). Typically NF-κB activation is associated with resistance to apoptosis. Following stimulation with UV light however, NF-κB activation has been shown to be required for programmed cell death. To study this effect further and to determine the relationship between NF-κB and p53 function, we have examined the effect of UV light on U2OS cells. UV stimulation resulted in the activation of NF-κB DNA-binding and the induction of p53. Surprisingly, and in contrast with tumour necrosis factor α stimulation, this UV-induced NF-κB was transcriptionally inert. These observations suggest a model in which the NF-κB switch from an anti-apoptotic to a pro-apoptotic role within the cell results from modulation of its ability to stimulate gene expression, possibly as a result of the ability of p53 to sequester transcriptional co-activator proteins such as p300/CREB (cAMP-response-element-binding protein)-binding protein.


1994 ◽  
Vol 14 (3) ◽  
pp. 1852-1860
Author(s):  
K Nakagomi ◽  
Y Kohwi ◽  
L A Dickinson ◽  
T Kohwi-Shigematsu

The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuying Ma ◽  
Xiaohui Wang ◽  
Weisheng Luo ◽  
Ji Xiao ◽  
Xiaowei Song ◽  
...  

cGAS, a DNA sensor in mammalian cells, catalyzes the generation of 2’-3’-cyclic AMP-GMP (cGAMP) once activated by the binding of free DNA. cGAMP can bind to STING, activating downstream TBK1-IRF-3 signaling to initiate the expression of type I interferons. Although cGAS has been considered a traditional DNA-binding protein, several lines of evidence suggest that cGAS is a potential RNA-binding protein (RBP), which is mainly supported by its interactions with RNAs, RBP partners, RNA/cGAS-phase-separations as well as its structural similarity with the dsRNA recognition receptor 2’-5’ oligoadenylate synthase. Moreover, two influential studies reported that the cGAS-like receptors (cGLRs) of fly Drosophila melanogaster sense RNA and control 3′-2′-cGAMP signaling. In this review, we summarize and discuss in depth recent studies that identified or implied cGAS as an RBP. We also comprehensively summarized current experimental methods and computational tools that can identify or predict RNAs that bind to cGAS. Based on these discussions, we appeal that the RNA-binding activity of cGAS cannot be ignored in the cGAS-mediated innate antiviral response. It will be important to identify RNAs that can bind and regulate the activity of cGAS in cells with or without virus infection. Our review provides novel insight into the regulation of cGAS by its RNA-binding activity and extends beyond its DNA-binding activity. Our review would be significant for understanding the precise modulation of cGAS activity, providing the foundation for the future development of drugs against cGAS-triggering autoimmune diseases such as Aicardi-Gourtières syndrome.


1996 ◽  
Vol 271 (41) ◽  
pp. 25617-25623 ◽  
Author(s):  
Mark E. Martin ◽  
Yurii Chinenov ◽  
Mi Yu ◽  
Tonya K. Schmidt ◽  
Xiu-Ying Yang

Sign in / Sign up

Export Citation Format

Share Document