scholarly journals A novel approach for small sample size family-based association studies: sequential tests

2011 ◽  
Vol 19 (8) ◽  
pp. 915-920 ◽  
Author(s):  
Ozlem Ilk ◽  
Farid Rajabli ◽  
Dilay Ciglidag Dungul ◽  
Hilal Ozdag ◽  
Hakki Gokhan Ilk
Author(s):  
Amelie Elsäßer ◽  
Anja Victor ◽  
Gerhard Hommel

In candidate gene association studies, usually several elementary hypotheses are tested simultaneously using one particular set of data. The data normally consist of partly correlated SNP information. Every SNP can be tested for association with the disease, e.g., using the Cochran-Armitage test for trend. To account for the multiplicity of the test situation, different types of multiple testing procedures have been proposed. The question arises whether procedures taking into account the discreteness of the situation show a benefit especially in case of correlated data. We empirically evaluate several different multiple testing procedures via simulation studies using simulated correlated SNP data. We analyze FDR and FWER controlling procedures, special procedures for discrete situations, and the minP-resampling-based procedure. Within the simulation study, we examine a broad range of different gene data scenarios. We show that the main difference in the varying performance of the procedures is due to sample size. In small sample size scenarios, the minP-resampling procedure though controlling the stricter FWER even had more power than the classical FDR controlling procedures. In contrast, FDR controlling procedures led to more rejections in higher sample size scenarios.


Author(s):  
J. Mullaert ◽  
M. Bouaziz ◽  
Y. Seeleuthner ◽  
B. Bigio ◽  
J-L. Casanova ◽  
...  

AbstractMany methods for rare variant association studies require permutations to assess the significance of tests. Standard permutations assume that all individuals are exchangeable and do not take population stratification (PS), a known confounding factor in genetic studies, into account. We propose a novel strategy, LocPerm, in which individuals are permuted only with their closest ancestry-based neighbors. We performed a simulation study, focusing on small samples, to evaluate and compare LocPerm with standard permutations and classical adjustment on first principal components. Under the null hypothesis, LocPerm was the only method providing an acceptable type I error, regardless of sample size and level of stratification. The power of LocPerm was similar to that of standard permutation in the absence of PS, and remained stable in different PS scenarios. We conclude that LocPerm is a method of choice for taking PS and/or small sample size into account in rare variant association studies.


2020 ◽  
Vol 21 ◽  
Author(s):  
Roberto Gabbiadini ◽  
Eirini Zacharopoulou ◽  
Federica Furfaro ◽  
Vincenzo Craviotto ◽  
Alessandra Zilli ◽  
...  

Background: Intestinal fibrosis and subsequent strictures represent an important burden in inflammatory bowel disease (IBD). The detection and evaluation of the degree of fibrosis in stricturing Crohn’s disease (CD) is important to address the best therapeutic strategy (medical anti-inflammatory therapy, endoscopic dilation, surgery). Ultrasound elastography (USE) is a non-invasive technique that has been proposed in the field of IBD for evaluating intestinal stiffness as a biomarker of intestinal fibrosis. Objective: The aim of this review is to discuss the ability and current role of ultrasound elastography in the assessment of intestinal fibrosis. Results and Conclusion: Data on USE in IBD are provided by pilot and proof-of-concept studies with small sample size. The first type of USE investigated was strain elastography, while shear wave elastography has been introduced lately. Despite the heterogeneity of the methods of the studies, USE has been proven to be able to assess intestinal fibrosis in patients with stricturing CD. However, before introducing this technique in current practice, further studies with larger sample size and homogeneous parameters, testing reproducibility, and identification of validated cut-off values are needed.


Author(s):  
Jonah T Hansen ◽  
Luca Casagrande ◽  
Michael J Ireland ◽  
Jane Lin

Abstract Statistical studies of exoplanets and the properties of their host stars have been critical to informing models of planet formation. Numerous trends have arisen in particular from the rich Kepler dataset, including that exoplanets are more likely to be found around stars with a high metallicity and the presence of a “gap” in the distribution of planetary radii at 1.9 R⊕. Here we present a new analysis on the Kepler field, using the APOGEE spectroscopic survey to build a metallicity calibration based on Gaia, 2MASS and Strömgren photometry. This calibration, along with masses and radii derived from a Bayesian isochrone fitting algorithm, is used to test a number of these trends with unbiased, photometrically derived parameters, albeit with a smaller sample size in comparison to recent studies. We recover that planets are more frequently found around higher metallicity stars; over the entire sample, planetary frequencies are 0.88 ± 0.12 percent for [Fe/H] < 0 and 1.37 ± 0.16 percent for [Fe/H] ≥ 0 but at two sigma we find that the size of exoplanets influences the strength of this trend. We also recover the planet radius gap, along with a slight positive correlation with stellar mass. We conclude that this method shows promise to derive robust statistics of exoplanets. We also remark that spectrophotometry from Gaia DR3 will have an effective resolution similar to narrow band filters and allow to overcome the small sample size inherent in this study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinya Hosokawa ◽  
Kyosuke Momota ◽  
Anthony A. Chariton ◽  
Ryoji Naito ◽  
Yoshiyuki Nakamura

AbstractDiversity indices are commonly used to measure changes in marine benthic communities. However, the reliability (and therefore suitability) of these indices for detecting environmental change is often unclear because of small sample size and the inappropriate choice of communities for analysis. This study explored uncertainties in taxonomic density and two indices of community structure in our target region, Japan, and in two local areas within this region, and explored potential solutions. Our analysis of the Japanese regional dataset showed a decrease in family density and a dominance of a few species as sediment conditions become degraded. Local case studies showed that species density is affected by sediment degradation at sites where multiple communities coexist. However, two indices of community structure could become insensitive because of masking by community variability, and small sample size sometimes caused misleading or inaccurate estimates of these indices. We conclude that species density is a sensitive indicator of change in marine benthic communities, and emphasise that indices of community structure should only be used when the community structure of the target community is distinguishable from other coexisting communities and there is sufficient sample size.


Sign in / Sign up

Export Citation Format

Share Document