scholarly journals The centrosomal localization of KM-HN-1 (MGC33607) depends on the leucine zipper motif and the C-terminal coiled-coil domain

2007 ◽  
Vol 39 (6) ◽  
pp. 828-838 ◽  
Author(s):  
Hye Jeong Park ◽  
Hyun-Joo Seo ◽  
Hyun-Woo Kim ◽  
Jung Soon Kim ◽  
So-Yoon Hwang ◽  
...  
2005 ◽  
Vol 387 (2) ◽  
pp. 325-331 ◽  
Author(s):  
Teruaki OKU ◽  
Saotomo ITOH ◽  
Rie ISHII ◽  
Kensuke SUZUKI ◽  
William M. NAUSEEF ◽  
...  

The actin-binding protein p57/coronin-1, a member of the coronin protein family, is selectively expressed in immune cells, and has been implicated in leucocyte migration and phagocytosis by virtue of its interaction with F-actin (filamentous actin). We previously identified two sites in the N-terminal region of p57/coronin-1 by which it binds actin, and in the present study we examine the role of the leucine zipper motif located in the C-terminal coiled-coil domain in mediating the homotypic association of p57/coronin-1. Recombinant p57/coronin-1 protein in solution formed a homodimer, as analysed by Superose 12 column chromatography and by sucrose density gradient centrifugation. In vivo, a truncated form consisting of the C-terminal coiled-coil domain co-precipitated with full-length p57/coronin-1 when both were co-expressed in COS-1 cells. A chimaeric construct composed of the C-terminal domain of p57/coronin-1 (which lacks the actin-binding sites) fused with green fluorescent protein co-localized with cortical F-actin-rich regions in COS-1 cells only when full-length p57/coronin-1 was expressed simultaneously in the cells, suggesting that the C-terminal region is required for the homotypic association of p57/coronin-1. Furthermore, p57LZ, a polypeptide consisting of the C-terminal 90 amino acid residues of p57/coronin-1, was sufficient for dimerization. When two leucine residues out of the four that constitute the leucine zipper structure in p57LZ or full-length p57 were replaced with alanine residues, the mutants failed to form homodimers. Taken together, these results demonstrate that p57/coronin-1 forms homodimers, that the association is mediated by the leucine zipper structure in the C-terminal region, and that it plays a role in the cross-linking of F-actin in the cell.


2009 ◽  
Vol 421 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Yo-hei Watanabe ◽  
Yosuke Nakazaki ◽  
Ryoji Suno ◽  
Masasuke Yoshida

The ClpB chaperone forms a hexamer ring and rescues aggregated proteins in co-operation with the DnaK system. Each subunit of ClpB has two nucleotide-binding modules, AAA (ATPase associated with various cellular activities)-1 and AAA-2, and an 85-Å (1 Å=0.1 nm)-long coiled-coil. The coiled-coil consists of two halves: wing-1, leaning toward AAA-1, and wing-2, leaning away from all the domains. The coiled-coil is stabilized by leucine zipper-like interactions between leucine and isoleucine residues of two amphipathic α-helices that twist around each other to form each wing. To destabilize the two wings, we developed a series of mutants by replacing these residues with alanine. As the number of replaced residues increased, the chaperone activity was lost and the hexamer became unstable. The mutants, which had a stable hexameric structure but lost the chaperone activities, were able to exert the threading of soluble denatured proteins through their central pore. The destabilization of wing-1, but not wing-2, resulted in a several-fold stimulation of ATPase activity. These results indicate that stability of both wings of the coiled-coil is critical for full functioning of ClpB, but not for the central-pore threading of substrate proteins, and that wing-1 is involved in the communication between AAA-1 and AAA-2.


2011 ◽  
Vol 301 (1) ◽  
pp. C106-C114 ◽  
Author(s):  
Moonsun Hwang ◽  
Jae-kyun Ko ◽  
Noah Weisleder ◽  
Hiroshi Takeshima ◽  
Jianjie Ma

We recently discovered that MG53, a muscle-specific tripartite motif (TRIM) family protein, functions as a sensor of oxidation to nucleate the assembly of cell membrane repair machinery. Our data showed that disulfide bond formation mediated by Cys242 is critical for MG53-mediated translocation of intracellular vesicles toward the injury sites. Here we test the hypothesis that leucine zipper motifs in the coiled-coil domain of MG53 constitute an additional mechanism that facilitates oligomerization of MG53 during cell membrane repair. Two leucine zipper motifs in the coiled-coil domain of MG53 (LZ1 - L176/L183/L190/V197 and LZ2 - L205/L212/L219/L226) are highly conserved across the different animal species. Chemical cross-linking studies show that LZ1 is critical for MG53 homodimerization, whereas LZ2 is not. Mutations of the conserved leucines into alanines in LZ1, not in LZ2, diminish the redox-dependent oligomerization of MG53. Live cell imaging studies demonstrate that the movement of green fluorescent protein (GFP)-tagged MG53 mutants (GFP-LA1 and GFP-LA2) is partially compromised in response to mechanical damage of the cell membrane, and the GFP-LA1/2 double mutant is completely ineffective in translocation toward the injury sites. In addition to the leucine zipper-mediated intermolecular interaction, redox-dependent cross talk between MG53 appears to be an obligatory step for cell membrane repair, since in vivo modification of cysteine residues with alkylating reagents can prevent the movement of MG53 toward the injury sites. Our data show that oxidation of the thiol group of Cys242 and leucine zipper-mediated interaction among the MG53 molecules both contribute to the nucleation process for MG53-mediated cell membrane repair.


2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 859-869 ◽  
Author(s):  
Patrick J Ferris ◽  
Ursula W Goodenough

Diploid cells of Chlamydomonas reinhardtii that are heterozygous at the mating-type locus (mt  +/mt  –) differentiate as minus gametes, a phenomenon known as minus dominance. We report the cloning and characterization of a gene that is necessary and sufficient to exert this minus dominance over the plus differentiation program. The gene, called mid, is located in the rearranged (R) domain of the mt  – locus, and has duplicated and transposed to an autosome in a laboratory strain. The imp11 mt  – mutant, which differentiates as a fusion-incompetent plus gamete, carries a point mutation in mid. Like the fus1 gene in the mt  + locus, mid displays low codon bias compared with other nuclear genes. The mid sequence carries a putative leucine zipper motif, suggesting that it functions as a transcription factor to switch on the minus program and switch off the plus program of gametic differentiation. This is the first sex-determination gene to be characterized in a green organism.


Sign in / Sign up

Export Citation Format

Share Document