scholarly journals Bidirectional selection on threshold size for flowering in Cynoglossum officinale (hound's-tongue)

Heredity ◽  
1995 ◽  
Vol 74 (4) ◽  
pp. 415-424 ◽  
Author(s):  
Renate A Wesselingh ◽  
Tom J de Jong
1998 ◽  
Vol 138 (3) ◽  
pp. 489-496 ◽  
Author(s):  
TOM J. DE JONG ◽  
LEENTJE GOOSEN-DE ROO ◽  
PETER G. L. KLINKHAMER

2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Andreas Lindhorst ◽  
Nora Raulien ◽  
Peter Wieghofer ◽  
Jens Eilers ◽  
Fabio M. V. Rossi ◽  
...  

AbstractA chronic low-grade inflammation within adipose tissue (AT) seems to be the link between obesity and some of its associated diseases. One hallmark of this AT inflammation is the accumulation of AT macrophages (ATMs) around dead or dying adipocytes, forming so-called crown-like structures (CLS). To investigate the dynamics of CLS and their direct impact on the activation state of ATMs, we established a laser injury model to deplete individual adipocytes in living AT from double reporter mice (GFP-labeled ATMs and tdTomato-labeled adipocytes). Hence, we were able to detect early ATM-adipocyte interactions by live imaging and to determine a precise timeline for CLS formation after adipocyte death. Further, our data indicate metabolic activation and increased lipid metabolism in ATMs upon forming CLS. Most importantly, adipocyte death, even in lean animals under homeostatic conditions, leads to a locally confined inflammation, which is in sharp contrast to other tissues. We identified cell size as cause for the described pro-inflammatory response, as the size of adipocytes is above a critical threshold size for efferocytosis, a process for anti-inflammatory removal of dead cells during tissue homeostasis. Finally, experiments on parabiotic mice verified that adipocyte death leads to a pro-inflammatory response of resident ATMs in vivo, without significant recruitment of blood monocytes. Our data indicate that adipocyte death triggers a unique degradation process and locally induces a metabolically activated ATM phenotype that is globally observed with obesity.


2020 ◽  
pp. 2000097
Author(s):  
Jingyun Hu ◽  
Meng Wang ◽  
Fawei Tang ◽  
Miao Liu ◽  
Yunyun Mu ◽  
...  

2020 ◽  
pp. 0734242X2097409
Author(s):  
Federica Ruggero ◽  
Alexandra E. Porter ◽  
Nikolaos Voulvoulis ◽  
Emiliano Carretti ◽  
Tommaso Lotti ◽  
...  

The present study develops a multi-step methodology for identification and quantification of microplastics and micro-bioplastics (together called in the current work micro-(bio)plastics) in sludge. In previous studies, different methods for the extraction of microplastics were devised for traditional plastics, while the current research tested the methodology on starch-based micro-bioplastics of 0.1–2 mm size. Compostable bioplastics are expected to enter the anaerobic or aerobic biological treatments that lead to end-products applicable in agriculture; some critical conditions of treatments (e.g. low temperature and moisture) can slow down the degradation process and be responsible for the presence of microplastics in the end-product. The methodology consists of an initial oxidation step, with hydrogen peroxide 35% concentrated to clear the sludge and remove the organic fraction, followed by a combination of flotation with sodium chloride and observation of the residues under a fluorescence microscope using a green filter. The workflow revealed an efficacy of removal from 94% to 100% and from 92% to 96% for plastic fragments, 0.5–2 mm and 0.1–0.5 mm size, respectively. The methodology was then applied to samples of food waste pulp harvested after a shredding pre-treatment in an anaerobic digestion (AD) plant in Italy, where polyethylene, starch-based Mater-Bi® and cellophane microplastics were recovered in amounts of 9 ± 1.3/10 g <2 mm and 4.8 ± 1.2/10 g ⩾2 mm. The study highlights the need to lower the threshold size for the quantification of plastics in organic fertilizers, which is currently set by legislations at 2 mm, by improving the background knowledge about the fate of the micro-(bio)plastics in biological treatments for the organic waste.


Ecology ◽  
1997 ◽  
Vol 78 (7) ◽  
pp. 2118-2132 ◽  
Author(s):  
Renate A. Wesselingh ◽  
Peter G. L. Klinkhamer ◽  
Tom J. de Jong ◽  
Laurence A. Boorman

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lili He ◽  
Yinghua Sun ◽  
Guoying Huang

AbstractThe threshold size for enlarged abdominal lymph nodes (E-ALNs), a common pediatric disorder, has yet to be standardized. According to the maximum short-axis diameter, this study divided ALNs into Grade A (≥ 10 mm), Grade B (8–10 mm), Grade C (5–8 mm), and Grade D (< 5 mm, normal). To identify the threshold size for E-ALNs, the prevalence of each grade was compared between asymptomatic individuals and symptomatic (e.g., abdominal pain) individuals without other diseases (e.g., appendicitis) that could explain the symptoms for different ages using data from > 200,000 individuals. The results showed the following: (1) For ages 1–3 years, the recommended threshold size is 8 mm, as the differences in the prevalence between the two groups were nonsignificant for Grade C but significant (p < 0.05) for both Grades A and B. (2) For ages 3–14 years, the recommended threshold size is 5 mm, as the differences between the two groups were significant (p < 0.05) for Grades A, B, and C. (3) The prevalence of Grades A, B, and C was very low for ages 0–1 years and high for ages 1–6 years. (4) The prevalence for males was generally higher than that for females for Grades A and B.


2020 ◽  
Vol 90 (11) ◽  
pp. 1601-1613
Author(s):  
Hannah P. Boelts ◽  
Yadira Ibarra ◽  
Clive Hayzelden

ABSTRACT Diatoms are common in terrestrial freshwater carbonate environments, but their influence on the resulting carbonate texture and porosity remains unquantified. This study investigates the effect of diatoms on the textural variability and syndepositional porosity of spring-associated carbonate coated grains from a freshwater spring in Henry Cowell State Park, northern California, USA. Carbonate coated grains (n = 60) were collected from the distal-most pool of the spring (∼ 300 m from the spring source) and the porosity of the 1 cm diameter fraction (n = 20) was determined using the ImageJ software by adjusting the threshold size for pores &gt; 1000 μm2. Results reveal a strong positive correlation between the number of pores and the number of diatoms examined in each coated grain (r = 0.77). There is a moderate positive relationship between the length of the largest diatom and the minor-axis diameter of a best-fit ellipse of its corresponding pore (r = 0.60). The total pore area for pores associated with at least one diatom was significantly greater than the total pore area of pores that did not enclose diatom frustules (t = 1.80, p &lt; 0.05). Textural observations show that fine-grained laminated textures contain fewer diatoms than the porous textures, suggesting that diatoms disrupt lamination continuity by introducing pore space. These findings have implications for the influence of diatoms on the syndepositional porosity of carbonate rocks from the Cretaceous to Recent and may help explain textural differences between modern marine carbonate microbialites and their Precambrian counterparts.


2014 ◽  
Vol 14 (6) ◽  
pp. 7637-7681 ◽  
Author(s):  
T. Eidhammer ◽  
H. Morrison ◽  
A. Bansemer ◽  
A. Gettelman ◽  
A. J. Heymsfield

Abstract. Detailed measurements of ice crystals in cirrus clouds were used to compare with results from the Community Atmospheric Model Version 5 (CAM5) global climate model. The observations are from two different field campaigns with contrasting conditions: Atmospheric Radiation Measurements Spring Cloud Intensive Operational Period in 2000 (ARM-IOP), which was characterized primarily by midlatitude frontal clouds and cirrus, and Tropical Composition, Cloud and Climate Coupling (TC4), which was dominated by anvil cirrus. Results show that the model typically overestimates the slope parameter of the exponential size distributions of cloud ice and snow, while the variation with temperature (height) is comparable. The model also overestimates the ice/snow number concentration (0th moment of the size distribution) and underestimates higher moments (2nd through 5th), but compares well with observations for the 1st moment. Overall the model shows better agreement with observations for TC4 than for ARM-IOP in regards to the moments. The mass-weighted terminal fallspeed is lower in the model compared to observations for both ARM-IOP and TC4, which is partly due to the overestimation of the size distribution slope parameter. Sensitivity tests with modification of the threshold size for cloud ice to snow autoconversion (Dcs) do not show noticeable improvement in modeled moments, slope parameter and mass weighed fallspeed compared to observations. Further, there is considerable sensitivity of the cloud radiative forcing to Dcs, consistent with previous studies, but no value of Dcs improves modeled cloud radiative forcing compared to measurements. Since the autoconversion of cloud ice to snow using the threshold size Dcs has little physical basis, future improvement to combine cloud ice and snow into a single category, eliminating the need for autoconversion, is suggested.


Sign in / Sign up

Export Citation Format

Share Document