scholarly journals Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex

Heredity ◽  
2015 ◽  
Vol 116 (4) ◽  
pp. 351-361 ◽  
Author(s):  
F Balao ◽  
M Tannhäuser ◽  
M T Lorenzo ◽  
M Hedrén ◽  
O Paun

Abstract Allopolyploidization often happens recurrently, but the evolutionary significance of its iterative nature is not yet fully understood. Of particular interest are the gene flow dynamics and the mechanisms that allow young sibling polyploids to remain distinct while sharing the same ploidy, heritage and overlapping distribution areas. By using eight highly variable nuclear microsatellites, newly reported here, we investigate the patterns of divergence and gene flow between 386 polyploid and 42 diploid individuals, representing the sibling allopolyploids Dactylorhiza majalis s.s. and D. traunsteineri s.l. and their parents at localities across Europe. We make use in our inference of the distinct distribution ranges of the polyploids, including areas in which they are sympatric (that is, the Alps) or allopatric (for example, Pyrenees with D. majalis only and Britain with D. traunsteineri only). Our results show a phylogeographic signal, but no clear genetic differentiation between the allopolyploids, despite the visible phenotypic divergence between them. The results indicate that gene flow between sibling Dactylorhiza allopolyploids is frequent in sympatry, with potential implications for the genetic patterns across their entire distribution range. Limited interploidal introgression is also evidenced, in particular between D. incarnata and D. traunsteineri. Altogether the allopolyploid genomes appear to be porous for introgression from related diploids and polyploids. We conclude that the observed phenotypic divergence between D. majalis and D. traunsteineri is maintained by strong divergent selection on specific genomic areas with strong penetrance, but which are short enough to remain undetected by genotyping dispersed neutral markers.

The Auk ◽  
2019 ◽  
Vol 136 (4) ◽  
Author(s):  
Catalina Palacios ◽  
Silvana García-R ◽  
Juan Luis Parra ◽  
Andrés M Cuervo ◽  
F Gary Stiles ◽  
...  

Abstract Ecological speciation can proceed despite genetic interchange when selection counteracts the homogenizing effects of migration. We tested predictions of this divergence-with-gene-flow model in Coeligena helianthea and C. bonapartei, 2 parapatric Andean hummingbirds with marked plumage divergence. We sequenced putatively neutral markers (mitochondrial DNA [mtDNA] and nuclear ultraconserved elements [UCEs]) to examine genetic structure and gene flow, and a candidate gene (MC1R) to assess its role underlying divergence in coloration. We also tested the prediction of Gloger’s rule that darker forms occur in more humid environments, and examined morphological variation to assess adaptive mechanisms potentially promoting divergence. Genetic differentiation between species was low in both ND2 and UCEs. Coalescent estimates of migration were consistent with divergence with gene flow, but we cannot reject incomplete lineage sorting reflecting recent speciation as an explanation for patterns of genetic variation. MC1R variation was unrelated to phenotypic differences. Species did not differ in macroclimatic niches but were distinct in morphology. Although we reject adaptation to variation in macroclimatic conditions as a cause of divergence, speciation may have occurred in the face of gene flow driven by other ecological pressures or by sexual selection. Marked phenotypic divergence with no neutral genetic differentiation is remarkable for Neotropical birds, and makes C. helianthea and C. bonapartei an appropriate system in which to search for the genetic basis of species differences employing genomics.


2021 ◽  
Author(s):  
Lepais Olivier ◽  
Abdeldjalil Aissi ◽  
Errol Véla ◽  
Yassine Beghami

Rear-edge populations represent reservoirs of potentially unique genetic diversity but are particularly vulnerable to global changes. While continental-scale phylogeographic studies usually do not cover these populations, more focused local scale study of rear-edge populations should help better understand both past evolutionary history and its consequences for the persistence and conservation of these potentially unique populations. We studied molecular variation at 36 sequenced nuclear microsatellites in 11 rear-edge Quercus faginea and Q. canariensis populations across Algeria to shed light on taxonomic relationship, population past evolutionary history and recent demographic trajectory. We used descriptive approach and simulation-based inference to assess the information content and complementarity of linked microsatellite and flanking sequence variations. Genetic differentiation among populations classified into eight well-defined genetic clusters do not allow to unambiguously delineate two species. Instead, continuous level of genetic differentiation indicates interspecific gene flow or drift in isolation. Whereas the analysis of microsatellite variation allowed inferring recent interspecific gene flow, additional nucleotide variation in flanking sequences, by reducing homoplasy, pointed towards ancient interspecific gene flow followed by drift in isolation. The assessment of the weight of each polymorphism in the inference demonstrates the value of linked variation with contrasted mutational mechanisms and rates to refine historical demographic inference. Past population size decline inferred in some of these oak populations as well as low contemporary effective population size for most populations is a concern for the persistence of these populations of high evolutionary significance and conservation value.


2010 ◽  
Vol 365 (1543) ◽  
pp. 1077-1092 ◽  
Author(s):  
Sonya M. Clegg ◽  
Albert B. Phillimore

Colonization of an archipelago sets the stage for adaptive radiation. However, some archipelagos are home to spectacular radiations, while others have much lower levels of diversification. The amount of gene flow among allopatric populations is one factor proposed to contribute to this variation. In island colonizing birds, selection for reduced dispersal ability is predicted to produce changing patterns of regional population genetic structure as gene flow-dominated systems give way to drift-mediated divergence. If this transition is important in facilitating phenotypic divergence, levels of genetic and phenotypic divergence should be associated. We consider population genetic structure and phenotypic divergence among two co-distributed, congeneric (Genus: Zosterops ) bird species inhabiting the Vanuatu archipelago. The more recent colonist, Z. lateralis , exhibits genetic patterns consistent with a strong influence of distance-mediated gene flow. However, complex patterns of asymmetrical gene flow indicate variation in dispersal ability or inclination among populations. The endemic species, Z. flavifrons , shows only a partial transition towards a drift-mediated system, despite a long evolutionary history on the archipelago. We find no strong evidence that gene flow constrains phenotypic divergence in either species, suggesting that levels of inter-island gene flow do not explain the absence of a radiation across this archipelago.


Alpine Botany ◽  
2021 ◽  
Author(s):  
Christian Parisod

AbstractThe main, continuous mountain range of the European Alpine System (i.e., the Alps) hosts a diversified pool of species whose evolution has long been investigated. The legacy of past climate changes on the distribution of high-elevation plants as well as taxa differentially adapted to the mosaic of edaphic conditions (i.e., surmised ecotypes on calcareous, siliceous, serpentine bedrocks) and the origin of new species are here discussed based on available evidence from endemic taxa across the Alps. The integration of main spatial and ecological patterns within and among species supports speciation driven by spatial isolation in main glacial refugia where plant populations survived during cold phases and hindered by intense gene flow along main expansion pathways during warm phases. Despite patterns of genetic differentiation matching environmental heterogeneity, processes underlying the dynamics of distribution ranges likely promoted recurrent homogenization of incipient divergence and generally hindered the completion of speciation (except for cases of hybrid speciation). Even intense selective pressures on toxic bedrocks such as serpentine seemingly fail to support the completion of speciation. Accordingly, typical scenarios of ecological speciation whereby local adaptation to environmental heterogeneity initiates and supports long-term reduction of gene flow may rarely be at the origin of stable species in the Alps. Although consistent with neutral processes whereby spatial isolation driven by past climate changes promoted reproductive isolation and yielded limited diversification, mechanisms at the origin of new species across heterogeneous landscapes of the Alps remain insufficiently known. Necessary advances to reliably understand the evolution of biodiversity in the Alps and identify possible museums or cradles of variation in face of climate changes are discussed.


2018 ◽  
Author(s):  
Catalina Palacios ◽  
Silvana García-R ◽  
Juan Luis Parra ◽  
Andrés M. Cuervo ◽  
F. Gary Stiles ◽  
...  

AbstractEcological speciation can proceed despite genetic interchange when selection counteracts homogeneizing effects of migration. We tested predictions of this divergence-with-gene-flow model in Coeligena helianthea and C. bonapartei, two parapatric Andean hummigbirds with marked plumage divergence. We sequenced neutral markers (mtDNA and nuclear ultra conserved elements) to examine genetic structure and gene flow, and a candidate gene (MC1R) to assess its role underlying divergence in coloration. We also tested the prediction of Glogers’ rule that darker forms occur in more humid environments, and compared ecomorphological variables to assess adaptive mechanisms potentially promoting divergence. Genetic differentiation between species was very low and coalescent estimates of migration were consistent with divergence with gene flow. MC1R variation was unrelated to phenotypic differences. Species did not differ in macroclimatic niches but were distinct in ecomorphology. Although we reject adaptation to variation in humidity as the cause of divergence, we hypothesize that speciation likely occurred in the face of gene flow, driven by other ecological pressures or by sexual selection. Marked phenotypic divergence with no neutral genetic differentiation is remarkable for Neotropical birds, and makes C. helianthea and C. bonapartei an appropriate system in which to search for the genetic basis of species differences employing genomics.


Crustaceana ◽  
1993 ◽  
Vol 65 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Barbara A. Stewart

AbstractThe use of protein electrophoretic data for determining species boundaries in amphipods is addressed. Analysis of published literature on genetic differentiation in amphipods showed that pairs of allopatric populations which have genetic identities (I) above a value of 0.85 probably represent intraspecific populations, whereas pairs of populations which have genetic identities below about 0.45 probably represent different species. It was recommended that if I values fall between 0.45 and 0.85, additional factors such as evidence of a lack of gene flow between the populations, and concordant morphological variation should be considered.


2008 ◽  
Vol 2 (3) ◽  
pp. 338-342 ◽  
Author(s):  
Yan Geng ◽  
Zhangping Yang ◽  
Hong Chang ◽  
Yongjiang Mao ◽  
Wei Sun ◽  
...  

2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Akiko Kyuno ◽  
Mifue Shintaku ◽  
Yuko Fujita ◽  
Hiroto Matsumoto ◽  
Motoo Utsumi ◽  
...  

We sequenced the mitochondrial ND4 gene to elucidate the evolutionary processes ofBathymodiolusmussels and mytilid relatives. Mussels of the subfamily Bathymodiolinae from vents and seeps belonged to 3 groups and mytilid relatives from sunken wood and whale carcasses assumed the outgroup positions to bathymodioline mussels. Shallow water mytilid mussels were positioned more distantly relative to the vent/seep mussels, indicating an evolutionary transition from shallow to deep sea via sunken wood and whale carcasses.Bathymodiolus platifronsis distributed in the seeps and vents, which are approximately 1500 km away. There was no significant genetic differentiation between the populations. There existed high gene flow betweenB. septemdierumandB. breviorand low but not negligible gene flow betweenB. marisindicusandB. septemdierumorB. brevior, although their habitats are 5000–10 000 km away. These indicate a high adaptability to the abyssal environments and a high dispersal ability ofBathymodiolusmussels.


Heredity ◽  
2021 ◽  
Author(s):  
Yael S. Rodger ◽  
Alexandra Pavlova ◽  
Steve Sinclair ◽  
Melinda Pickup ◽  
Paul Sunnucks

AbstractConservation management can be aided by knowledge of genetic diversity and evolutionary history, so that ecological and evolutionary processes can be preserved. The Button Wrinklewort daisy (Rutidosis leptorrhynchoides) was a common component of grassy ecosystems in south-eastern Australia. It is now endangered due to extensive habitat loss and the impacts of livestock grazing, and is currently restricted to a few small populations in two regions >500 km apart, one in Victoria, the other in the Australian Capital Territory and nearby New South Wales (ACT/NSW). Using a genome-wide SNP dataset, we assessed patterns of genetic structure and genetic differentiation of 12 natural diploid populations. We estimated intrapopulation genetic diversity to scope sources for genetic management. Bayesian clustering and principal coordinate analyses showed strong population genetic differentiation between the two regions, and substantial substructure within ACT/NSW. A coalescent tree-building approach implemented in SNAPP indicated evolutionary divergence between the two distant regions. Among the populations screened, the last two known remaining Victorian populations had the highest genetic diversity, despite having among the lowest recent census sizes. A maximum likelihood population tree method implemented in TreeMix suggested little or no recent gene flow except potentially between very close neighbours. Populations that were more genetically distinctive had lower genetic diversity, suggesting that drift in isolation is likely driving population differentiation though loss of diversity, hence re-establishing gene flow among them is desirable. These results provide background knowledge for evidence-based conservation and support genetic rescue within and between regions to elevate genetic diversity and alleviate inbreeding.


Sign in / Sign up

Export Citation Format

Share Document