scholarly journals pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies

Heredity ◽  
2017 ◽  
Vol 118 (6) ◽  
pp. 517-524 ◽  
Author(s):  
J Zhang ◽  
J-Y Feng ◽  
Y-L Ni ◽  
Y-J Wen ◽  
Y Niu ◽  
...  
Author(s):  
Junji Morisawa ◽  
Takahiro Otani ◽  
Jo Nishino ◽  
Ryo Emoto ◽  
Kunihiko Takahashi ◽  
...  

AbstractBayes factor analysis has the attractive property of accommodating the risks of both false negatives and false positives when identifying susceptibility gene variants in genome-wide association studies (GWASs). For a particular SNP, the critical aspect of this analysis is that it incorporates the probability of obtaining the observed value of a statistic on disease association under the alternative hypotheses of non-null association. An approximate Bayes factor (ABF) was proposed by Wakefield (Genetic Epidemiology 2009;33:79–86) based on a normal prior for the underlying effect-size distribution. However, misspecification of the prior can lead to failure in incorporating the probability under the alternative hypothesis. In this paper, we propose a semi-parametric, empirical Bayes factor (SP-EBF) based on a nonparametric effect-size distribution estimated from the data. Analysis of several GWAS datasets revealed the presence of substantial numbers of SNPs with small effect sizes, and the SP-EBF attributed much greater significance to such SNPs than the ABF. Overall, the SP-EBF incorporates an effect-size distribution that is estimated from the data, and it has the potential to improve the accuracy of Bayes factor analysis in GWASs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Xiao ◽  
Yang Zhou ◽  
Shu He ◽  
Wen-Long Ren

Many methods used in multi-locus genome-wide association studies (GWAS) have been developed to improve statistical power. However, most existing multi-locus methods are not quicker than single-locus methods. To address this concern, we proposed a fast score test integrated with Empirical Bayes (ScoreEB) for multi-locus GWAS. Firstly, a score test was conducted for each single nucleotide polymorphism (SNP) under a linear mixed model (LMM) framework, taking into account the genetic relatedness and population structure. Then, all of the potentially associated SNPs were selected with a less stringent criterion. Finally, Empirical Bayes in a multi-locus model was performed for all of the selected SNPs to identify the true quantitative trait nucleotide (QTN). Our new method ScoreEB adopts the similar strategy of multi-locus random-SNP-effect mixed linear model (mrMLM) and fast multi-locus random-SNP-effect EMMA (FASTmrEMMA), and the only difference is that we use the score test to select all the potentially associated markers. Monte Carlo simulation studies demonstrate that ScoreEB significantly improved the computational efficiency compared with the popular methods mrMLM, FASTmrEMMA, iterative modified-sure independence screening EM-Bayesian lasso (ISIS EM-BLASSO), hybrid of restricted and penalized maximum likelihood (HRePML) and genome-wide efficient mixed model association (GEMMA). In addition, ScoreEB remained accurate in QTN effect estimation and effectively controlled false positive rate. Subsequently, ScoreEB was applied to re-analyze quantitative traits in plants and animals. The results show that ScoreEB not only can detect previously reported genes, but also can mine new genes.


PLoS Genetics ◽  
2015 ◽  
Vol 11 (12) ◽  
pp. e1005717 ◽  
Author(s):  
Wesley K. Thompson ◽  
Yunpeng Wang ◽  
Andrew J. Schork ◽  
Aree Witoelar ◽  
Verena Zuber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document