scholarly journals Inhibition of NADPH Oxidase is Neuroprotective after Ischemia—Reperfusion

2009 ◽  
Vol 29 (7) ◽  
pp. 1262-1272 ◽  
Author(s):  
Hai Chen ◽  
Yun Seon Song ◽  
Pak H Chan

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is well known as a major source for superoxide radical generation in leukocytes. Superoxide radicals play a significant role in brain ischemia–reperfusion (I/R) injury. Recent data have also shown expression of NOX in the brain. However, the manner by which NOX is involved in pathologic processes after cerebral ischemia remains unknown. Therefore, we subjected mice deficient in the NOX subunit, gp91phox (gp91phox-/-), those treated with the NOX inhibitor, apocynin, and wild-type (WT) mice to 75 mins of focal ischemia followed by reperfusion. At 24 h of reperfusion, the gp91phox-/- and apocynin-treated mice showed 50% less brain infarction and 70% less cleaved spectrin compared with WT mice. The levels of 4-hydroxy-2-nonenal, malondialdehyde, and 8-hydroxy-2‘-deoxyguanosine increased significantly after I/R, indicating oxidative brain injury. NADPH oxidase inhibition reduced biomarker generation. Furthermore, NOX was involved in postischemic inflammation in the brains, as less intercellular adhesion molecule-1 upregulation and less neutrophil infiltration were found in the NOX-inhibited mice after I/R. Moreover, gp91phox expression increased after ischemia, and was further aggravated by genetic copper/zinc-superoxide dismutase (SOD1) ablation, but ameliorated in SOD1-overexpressing mice. This study suggests that NOX plays a role in oxidative stress and inflammation, thus contributing to ischemic brain injury.

2011 ◽  
Vol 32 (4) ◽  
pp. 720-730 ◽  
Author(s):  
Gab Seok Kim ◽  
Joo Eun Jung ◽  
Purnima Narasimhan ◽  
Hiroyuki Sakata ◽  
Hideyuki Yoshioka ◽  
...  

Activation of the NADPH oxidase subunit, NOX2, and increased oxidative stress are associated with neuronal death after cerebral ischemia and reperfusion. Inhibition of NOX2 by casein kinase 2 (CK2) leads to neuronal survival, but the mechanism is unknown. In this study, we show that in copper/zinc-superoxide dismutase transgenic (SOD1 Tg) mice, degradation of CK2α and CK2α′ and dephosphorylation of CK2β against oxidative stress were markedly reduced compared with wild-type (WT) mice that underwent middle cerebral artery occlusion. Inhibition of CK2 pharmacologically or by ischemic reperfusion facilitated accumulation of poly(ADP-ribose) polymers, the translocation of apoptosis-inducing factor (AIF), and cytochrome c release from mitochondria after ischemic injury. The eventual enhancement of CK2 inhibition under ischemic injury strongly increased 8-hydroxy-2′-deoxyguanosine and phosphorylation of H2A.X. Furthermore, CK2 inhibition by tetrabromocinnamic acid (TBCA) in SOD1 Tg and gp91 knockout (KO) mice after ischemia reperfusion induced less release of AIF and cytochrome c than in TBCA-treated WT mice. Inhibition of CK2 in gp91 KO mice subjected to ischemia reperfusion did not increase brain infarction compared with TBCA-treated WT mice. These results strongly suggest that NOX2 activation releases reactive oxygen species after CK2 inhibition, triggering release of apoptogenic factors from mitochondria and inducing DNA damage after ischemic brain injury.


2001 ◽  
Vol 281 (2) ◽  
pp. G577-G585 ◽  
Author(s):  
Akira Kobayashi ◽  
Hiroshi Imamura ◽  
Mitsuaki Isobe ◽  
Yutaka Matsuyama ◽  
Junpei Soeda ◽  
...  

The chronological expression (over 24 h) of two adhesion molecules [intercellular adhesion molecule-1 (ICAM-1) and CD11b/CD18 (Mac-1)] and the extent of liver damage, including injury to sinusoidal endothelial cells (SECs) and hepatocyte apoptosis, were investigated under two conditions of rat liver ischemia-reperfusion (I/R) injury: reversible (30 min) and fatal I/R (60 min). The chronological profiles of upregulation of ICAM-1 on hepatocytes and Mac-1 showed changes in parallel with the other liver damage parameters, and the extent of upregulation and various parameters of liver injury were more advanced in the 60-min I/R group. Paradoxically, the degree of ICAM-1 upregulation of SECs decreased significantly in the 60-min I/R group vs. the 30-min I/R group. Repression of hepatocyte apoptosis by administration of the caspase inhibitor ZVAD-fmk resulted in attenuation of neutrophil infiltration and liver injury. These findings indicate that 1) neutrophil infiltration is involved in the development of liver I/R injury; 2) interaction between ICAM-1 on SECs and Mac-1 on neutrophils is not an essential step for neutrophil transmigration through the endothelial layer because SECs, specifically, were impaired in the early stages of liver I/R injury; 3) the role of ICAM-1 and Mac-1 is to adhere neutrophils firmly to hepatocytes and activate neutrophils; and 4) excessive parenchymal apoptosis may be the signal for the neutrophil-induced inflammatory and necrotic reaction.


2002 ◽  
Vol 93 (1) ◽  
pp. 338-345 ◽  
Author(s):  
Hui Zhao ◽  
Michael C. Montalto ◽  
Kristine J. Pfeiffer ◽  
Liming Hao ◽  
Gregory L. Stahl

Gastrointestinal ischemia-reperfusion (I/R) injury is often associated with remote tissue injury. Complement activation plays an important role in local and remote tissue injury associated with gastrointestinal I/R. We developed a new murine model of gastrointestinal I/R that has complement-dependent local and remote tissue injury. Twenty, but not thirty, minutes of gastrointestinal ischemia followed by 3 h of reperfusion induced a significant loss of intestinal lactate dehydrogenase that was significantly prevented by a murine anti-murine C5 monoclonal antibody. Anti-C5 also significantly decreased neutrophil infiltration into the gut and lung. Gastrointestinal I/R significantly increased pulmonary intercellular adhesion molecule-1 mRNA and protein expression that was significantly inhibited by anti-C5. Pulmonary macrophage inflammatory protein-2 mRNA was significantly induced by gastrointestinal I/R and inhibited by anti-C5 treatment. These data demonstrate that brief periods of murine gastrointestinal I/R activate complement, leading to tissue injury and neutrophil accumulation. Anti-C5 treatment attenuates tissue injury, neutrophil recruitment, and leukocyte adherence molecule and chemokine expression in the mouse. This model will be well suited to investigate the role of complement-mediated tissue injury and gene expression after gastrointestinal I/R.


2007 ◽  
Vol 35 (5) ◽  
pp. 644-656 ◽  
Author(s):  
D Feng ◽  
W Xu ◽  
G Chen ◽  
C Hang ◽  
H Gao ◽  
...  

Traumatic brain injury (TBI) can induce a persistent inflammatory response, histopathological changes and apoptosis in the intestine. Glutamine has been shown to reduce bacterial translocation and maintain intestine mucosal integrity, but its effects on the inflammatory response, structural alterations and apoptosis in intestinal mucosa following TBI have not been previously investigated. Using the weight-drop method, a right parietal cortical contusion was induced in rats and, for the next 5 days, they were fed either chow alone or chow mixed with glutamine. Intestinal tissue samples were then removed for analysis. Following TBI, glutamine supplementation was found to: decrease intestinal concentrations of interleukin (IL) −1β, tumour necrosis factor-α (TNF-α) and IL-6; downregulate intercellular adhesion molecule-1 (ICAM-1) expression; attenuate TBI-induced damage to the intestine structure; and reduce apoptosis. These results suggest that post-TBI glutamine administration could suppress intestinal inflammation, protect intestinal mucosal structure and reduce mucosal apoptosis.


2002 ◽  
Vol 282 (6) ◽  
pp. L1229-L1238 ◽  
Author(s):  
Paul J. Kingham ◽  
W. Graham McLean ◽  
Deborah A. Sawatzky ◽  
Marie Therese Walsh ◽  
Richard W. Costello

Eosinophils adhere to airway cholinergic nerves and influence nerve cell function by releasing granule proteins onto inhibitory neuronal M2 muscarinic receptors. This study investigated the mechanism of eosinophil degranulation by cholinergic nerves. Eosinophils were cocultured with IMR32 cholinergic nerve cells, and eosinophil peroxidase (EPO) or leukotriene C4 (LTC4) release was measured. Coculture of eosinophils with nerves significantly increased EPO and LTC4 release compared with eosinophils alone. IMR32 cells, like parasympathetic nerves, express the adhesion molecules vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 (ICAM-1). Inhibition of these adhesion molecules alone or in combination significantly inhibited eosinophil degranulation. IMR32 cells also significantly augmented the eosinophil degranulation produced by formyl-Met-Leu-Phe. Eosinophil adhesion to IMR32 cells resulted in an ICAM-1-mediated production of reactive oxygen species via a neuronal NADPH oxidase, inhibition of which significantly inhibited eosinophil degranulation. Additionally, eosinophil adhesion increased the release of ACh from IMR32 cells. These neuroinflammatory cell interactions may be relevant in a variety of inflammatory and neurological conditions.


2010 ◽  
Vol 298 (4) ◽  
pp. H1166-H1176 ◽  
Author(s):  
Na Zhao ◽  
Yu-Ying Liu ◽  
Fang Wang ◽  
Bai-He Hu ◽  
Kai Sun ◽  
...  

Cardiotonic pills (CP) is a compound Chinese medicine widely used in China, as well as other countries, for the treatment of cardiovascular disease. However, limited data are available regarding the mechanism of action of CP on myocardial function during ischemia-reperfusion (I/R) injury. In this study, we examined the effect of CP on I/R-induced coronary microcirculatory disturbance and myocardial damage. Male Sprague-Dawley rats were subjected to left coronary anterior descending branch occlusion for 30 min followed by reperfusion with or without pretreatment with CP (0.1, 0.4, or 0.8 g/kg). Coronary blood flow, vascular diameter, velocity of red blood cells, and albumin leakage were evaluated in vivo after reperfusion. Neutrophil expression of CD18, malondialdehyde, inhibitor-κBα, myocardial infarction, endothelial expression of intercellular adhesion molecule 1, apoptosis-related proteins, and histological and ultrastructural evidence of myocardial damage were assessed after reperfusion. Pretreatment with CP (0.8 g/kg) significantly attenuated the I/R-induced myocardial microcirculatory disturbance, including decreased coronary blood flow and red blood cell velocity in arterioles, increased expression of CD18 on neutrophils and intercellular adhesion molecule 1 on endothelial cells, and albumin leakage from venules. In addition, the drug significantly ameliorated the I/R-induced myocardial damage and apoptosis indicated by increased malondialdehyde, infarct size, myocardial ultrastructural changes, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive myocardial cells, inhibitor-κBα degradation, and expression of Bcl-2, Bax, and caspase-3 in myocardial tissues. The results provide evidence for the potential role of CP in preventing microcirculatory disturbance and myocardial damage following I/R injury.


2016 ◽  
Vol 310 (7) ◽  
pp. L639-L657 ◽  
Author(s):  
Rou-Ling Cho ◽  
Chien-Chung Yang ◽  
I-Ta Lee ◽  
Chih-Chung Lin ◽  
Pei-Ling Chi ◽  
...  

Upregulation of intercellular adhesion molecule-1 (ICAM-1) is frequently implicated in lung inflammation. Lipopolysaccharide (LPS) has been shown to play a key role in inflammation via adhesion molecule induction and then causes lung injury. However, the mechanisms underlying LPS-induced ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unclear. We showed that LPS induced ICAM-1 expression in HPAEpiCs, revealed by Western blotting, RT-PCR, real-time PCR, and promoter assay. Pretreatment with the inhibitor of c-Src (protein phosphatase-1, PP1), reactive oxygen species (ROS) (Edaravone), NADPH oxidase (apocynin and diphenyleneiodonium chloride), EGFR (AG1478), PDGFR (AG1296), phosphatidylinositol-3-kinase (PI3K) (LY294002), MEK1/2 (U0126), or NF-κB (Bay11-7082) and transfection with siRNAs of c-Src, EGFR, PDGFR, Akt, p47 phox, Nox2, Nox4, p42, and p65 markedly reduced LPS-induced ICAM-1 expression and monocyte adherence to HPAEpiCs challenged with LPS. In addition, we established that LPS stimulated phosphorylation of c-Src, EGFR, PDGFR, Akt, or p65, which was inhibited by pretreatment with their respective inhibitors. LPS induced Toll-like receptor 4 (TLR4), MyD88, TNF receptor-associated factor 6 (TRAF6), c-Src, p47 phox, and Rac1 complex formation 2, which was attenuated by transfection with c-Src or TRAF6 siRNA. Furthermore, LPS markedly enhanced NADPH oxidase activation and intracellular ROS generation, which were inhibited by PP1. We established that LPS induced p42/p44 MAPK activation via a c-Src/NADPH oxidase/ROS/EGFR, PDGFR/PI3K/Akt-dependent pathway in these cells. Finally, we observed that LPS significantly enhanced NF-κB and IκBα phosphorylation, NF-κB translocation, and NF-κB promoter activity, which were inhibited by PP1, Edaravone, apocynin, diphenyleneiodonium chloride, AG1478, AG1296, LY294002 , or U0126. These results demonstrated that LPS induces p42/p44 MAPK activation mediated through the TLR4/MyD88/TRAF6/c-Src/NADPH oxidase/ROS/EGFR, PDGFR/PI3K/Akt pathway, which in turn initiates the activation of NF-κB and ultimately induces ICAM-1 expression in HPAEpiCs.


Sign in / Sign up

Export Citation Format

Share Document