Reconstructed changes in Arctic sea ice over the past 1,450 years

Nature ◽  
2011 ◽  
Vol 479 (7374) ◽  
pp. 509-512 ◽  
Author(s):  
Christophe Kinnard ◽  
Christian M. Zdanowicz ◽  
David A. Fisher ◽  
Elisabeth Isaksson ◽  
Anne de Vernal ◽  
...  
Keyword(s):  
Sea Ice ◽  
The Past ◽  
2020 ◽  
Author(s):  
Wieslaw Maslowski ◽  
Younjoo Lee ◽  
Anthony Craig ◽  
Mark Seefeldt ◽  
Robert Osinski ◽  
...  

<p>The Regional Arctic System Model (RASM) has been developed and used to investigate the past to present evolution of the Arctic climate system and to address increasing demands for Arctic forecasts beyond synoptic time scales. RASM is a fully coupled ice-ocean-atmosphere-land hydrology model configured over the pan-Arctic domain with horizontal resolution of 50 km or 25 km for the atmosphere and land and 9.3 km or 2.4 km for the ocean and sea ice components. As a regional model, RASM requires boundary conditions along its lateral boundaries and in the upper atmosphere, which for simulations of the past to present are derived from global atmospheric reanalyses, such as the National Center for Environmental Predictions (NCEP) Coupled Forecast System version 2 and Reanalysis (CFSv2/CFSR). This dynamical downscaling approach allows comparison of RASM results with observations, in place and time, to diagnose and reduce model biases. This in turn allows a unique capability not available in global weather prediction and Earth system models to produce realistic and physically consistent initial conditions for prediction without data assimilation.</p><p>More recently, we have developed a new capability for an intra-annual (up to 6 months) ensemble prediction of the Arctic sea ice and climate using RASM forced with the routinely produced (every 6 hours) NCEP CFSv2 global 9-month forecasts. RASM intra-annual ensemble forecasts have been initialized on the 1<sup>st</sup> of each month starting in 2019 with forcing for each ensemble member derived from CSFv2 forecasts, 24-hr apart from the month preceding the initial forecast date.  Several key processes and feedbacks will be discussed with regard to their impact on model physics, the representation of initial state and ensemble prediction skill of Arctic sea ice variability at time scales from synoptic to decadal. The skill of RASM ensemble forecasts will be assessed against available satellite observations with reference to reanalysis as well as hindcast data using several metrics, including the standard deviation, root mean square difference, Taylor diagrams and integrated ice-edge error.</p>


2020 ◽  
Vol 33 (4) ◽  
pp. 1487-1503 ◽  
Author(s):  
Daniel Senftleben ◽  
Axel Lauer ◽  
Alexey Karpechko

AbstractIn agreement with observations, Earth system models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulate a decline in September Arctic sea ice extent (SIE) over the past decades. However, the spread in their twenty-first-century SIE projections is large and the timing of the first ice-free Arctic summer ranges from 2020 to beyond 2100. The uncertainties arise from three sources (internal variability, model uncertainty, and scenario uncertainty), which are quantified in this study for projections of SIE. The goal is to narrow uncertainties by applying multiple diagnostic ensemble regression (MDER). MDER links future projections of sea ice extent to processes relevant to its simulation under present-day conditions using data covering the past 40 years. With this method, we can reduce model uncertainty in projections of SIE for the period 2020–44 by 30%–50% (0.8–1.3 million km2). Compared to the unweighted multimodel mean, the MDER-weighted mean projects an about 20% smaller SIE and an earlier near-disappearance of Arctic sea ice by more than a decade for a high–greenhouse gas scenario. We also show that two different methods estimating internal variability in SIE differ by 1 million km2. Regardless, the total uncertainties in the SIE projections remain large (up to 3.5 million km2, with irreducible internal variability contributing 30%) so that a precise time estimate of an ice-free Arctic proves impossible. We conclude that unweighted CMIP5 multimodel-mean projections of Arctic SIE are too optimistic and mitigation strategies to reduce Arctic warming need to be intensified.


Author(s):  
Bingyi Wu ◽  
Zhenkun Li ◽  
Jennifer A. Francis ◽  
Shuoyi Ding

Abstract Arctic warming and its association with the mid-latitudes have been hot topic over the past two decades. Although many studies have explored these issues it is not clear that how their linkage has changed over time. The results show that winter low tropospheric temperatures in Asia experienced two phases over the past two decades. Phase I (2007/2008 to 2012/2013) was characterized by a warm Arctic and cold Eurasia, and phase II by a warm Arctic and warm Eurasia (2013/2014 to 2018/2019). A strengthened association in winter temperature between the Arctic and Asia occurred during phase I, followed by a weakened linkage during phase II. Simulation experiments forced by observed Arctic sea ice variability largely reproduce observed patterns, suggesting that Arctic sea ice loss contributes to phasic (or low-frequency) variations in winter atmosphere and make the Arctic-Asia temperature association fluctuate over time. The weakening of the Arctic-Asia linkage post-2012/2013 was associated with amplified and expanded Arctic warming. The corresponding anomalies in SLP resembled a positive phase North Atlantic Oscillation (NAO) during phase II. This study implies that the phasic warm Arctic-cold Eurasia and warm Arctic-warm Eurasia patterns would alternately happen in the context of Arctic sea ice loss, which increase the difficulty to correctly predict Asian winter temperature.


2019 ◽  
Vol 32 (24) ◽  
pp. 8583-8602 ◽  
Author(s):  
Ian Baxter ◽  
Qinghua Ding ◽  
Axel Schweiger ◽  
Michelle L’Heureux ◽  
Stephen Baxter ◽  
...  

Abstract Over the past 40 years, the Arctic sea ice minimum in September has declined. The period between 2007 and 2012 showed accelerated melt contributed to the record minima of 2007 and 2012. Here, observational and model evidence shows that the changes in summer sea ice since the 2000s reflect a continuous anthropogenically forced melting masked by interdecadal variability of Arctic atmospheric circulation. This variation is partially driven by teleconnections originating from sea surface temperature (SST) changes in the east-central tropical Pacific via a Rossby wave train propagating into the Arctic [herein referred to as the Pacific–Arctic teleconnection (PARC)], which represents the leading internal mode connecting the pole to lower latitudes. This mode has contributed to accelerated warming and Arctic sea ice loss from 2007 to 2012, followed by slower declines in recent years, resulting in the appearance of a slowdown over the past 11 years. A pacemaker model simulation, in which we specify observed SST in the tropical eastern Pacific, demonstrates a physically plausible mechanism for the PARC mode. However, the model-based PARC mechanism is considerably weaker and only partially accounts for the observed acceleration of sea ice loss from 2007 to 2012. We also explore features of large-scale circulation patterns associated with extreme melting periods in a long (1800 yr) CESM preindustrial simulation. These results further support that remote SST forcing originating from the tropical Pacific can excite significant warm episodes in the Arctic. However, further research is needed to identify the reasons for model limitations in reproducing the observed PARC mode featuring a cold Pacific–warm Arctic connection.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
G. W. K. Moore ◽  
S. E. L. Howell ◽  
M. Brady ◽  
X. Xu ◽  
K. McNeil

AbstractThe ice arches that usually develop at the northern and southern ends of Nares Strait play an important role in modulating the export of Arctic Ocean multi-year sea ice. The Arctic Ocean is evolving towards an ice pack that is younger, thinner, and more mobile and the fate of its multi-year ice is becoming of increasing interest. Here, we use sea ice motion retrievals from Sentinel-1 imagery to report on the recent behavior of these ice arches and the associated ice fluxes. We show that the duration of arch formation has decreased over the past 20 years, while the ice area and volume fluxes along Nares Strait have both increased. These results suggest that a transition is underway towards a state where the formation of these arches will become atypical with a concomitant increase in the export of multi-year ice accelerating the transition towards a younger and thinner Arctic ice pack.


2019 ◽  
Author(s):  
Jean-Claude Gascard ◽  
Jinlun Zhang ◽  
Mehrad Rafizadeh

Abstract. The drastic reduction of the Arctic sea ice over the past 40 years is the most glaring evidence of climate change on Planet Earth. Among all the variables characterizing sea ice, the sea ice volume is by far the most sensitive one for climate change since it is decaying at the highest rate compared to sea ice extent and sea ice thickness. In 40 years the Arctic Ocean has lost about 3/4 of its sea ice volume at the end of the summer season corresponding to a reduction of both sea ice extent and sea ice thickness by half on average. From more than 16 000 km3, 40 years ago, the Arctic sea ice summer minimum dropped down to less than 4000 km3 during the most recent summers. Being a combination of Arctic sea ice extent and sea ice thickness, the Arctic sea ice volume is difficult to observe directly and accurately. We estimated cumulative Freezing-Degree Days (FDD) over a 9 month freezing time period (September to May each year) based on ERA Interim surface air temperature reanalysis over the whole Arctic Ocean and for the past 38 years. Then we compared the Arctic sea ice volume based on sea ice thickness deduced from cumulative FDD with Arctic sea ice volume estimated from PIOMAS (Pan Arctic Ice Ocean Modeling and Assimilation System) and from the ESA CRYOSAT-2 satellite. The results are strikingly similar. The warming of the atmosphere is playing an important role in contributing to the Arctic sea ice volume decrease during the whole freezing season (September to May). In addition, the FDD spatial distribution exhibiting a sharp double peak-like feature is reflecting the Multi Y ear Ice (MYI) versus First Year Ice (FYI) dual disposition typical of the Arctic sea ice cover. This is indicative of a significant contribution from the vertical ocean heat fluxes throughout the ice depending on MYI versus FYI distribution and the snow layer on top of it influencing the surface air temperature accordingly. In 2018 the Arctic MYI vanished almost completely for the first time ever over the past 40 years. The quasi complete disappearance of the Arctic sea ice is more likely to happen in summer within the next 15 years with broad consequences for Arctic marine and terrestrial ecosystems, climate and weather patterns on a planetary scale and globally on human activities.


2007 ◽  
Vol 46 ◽  
pp. 428-434 ◽  
Author(s):  
Walter N. Meier ◽  
Julienne Stroeve ◽  
Florence Fetterer

AbstractThe Arctic sea ice has been pointed to as one of the first and clearest indicators of climate change. Satellite passive microwave observations from 1979 through 2005 now indicate a significant –8.4±1.5% decade–1 trend (99% confidence level) in September sea-ice extent, a larger trend than earlier estimates due to acceleration of the decline over the past 41 years. There are differences in regional trends, with some regions more stable than others; not all regional trends are significant. The largest trends tend to occur in months where melt is at or near its peak for a given region. A longer time series of September extents since 1953 was adjusted to correct biases and extended through 2005. The trend from the longer time series is –7.7±0.6% decade–1 (99%), slightly less than from the satellite-derived data that begin in 1979, which is expected given the recent acceleration in the decline.


2022 ◽  
Author(s):  
Yuzhen Yan ◽  
Xinyu Wen

Abstract Arctic amplification (AA), a phenomenon that a larger change in temperature near the Arctic areas than the Northern Hemisphere average in the past 100+ years, has significant impacts on mid-latitude weather and climate, and therefore is of great concern in current climate projections. Previous studies suggest a wide range of AA factors from 1.0 to 12.5 using either the 20th century observations or climate model hindcasts. In the present paper, we explore the diversity of AA factor in a long-term transient simulation covering the past glacial-to-interglacial years. It is shown that the natural AA phenomenon is essentially linked with North Atlantic sea ice changes through ice-albedo feedback with a narrowed and robust AA factor of 2.5±0.8 throughout the last 21,000 years. Current observed AA phenomenon is a mixed result combining sea ice melting induced AA mode with GHGs induced global uniform warming, and thus has an AA factor slightly less than 2.5. In the future, as Arctic sea ice gradually melts off, we speculate that AA phenomenon might fade off accordingly and the AA factor will decline close to 1.0 in 1-2 centuries. Our findings provide new evidence for better understanding the range of AA factor and associated key physical processes, and provide new insights for AA’s projection in current anthropogenic warming climate.


Sign in / Sign up

Export Citation Format

Share Document